The Caribbean has been experiencing beach inundations of pelagic Sargassum, causing environmental, health and financial issues. This study showed variations in the composition and methane potential (MP) between the species of Sargassum. The MPs for S. natans VIII, S. natans I and S. fluitans (145, 66 and 113 mL CH4 g−1 Volatile Solids) were considerably below theoretical potentials, possibly due to the high levels of indigestible fibre and inhibitors. The mixed mats Sargassum composition was substantially different from the individual species, being higher in ash, calcium, iron, arsenic and phenolics. The mixed mats produced no methane, perhaps due to the high levels of phenolics. There was a strong correlation between MP and phenolic content. Heavy metals and metalloids were at levels that should not cause concern, except for arsenic (21–124 mg kg−1 dry weight). Further work on the speciation of arsenic in Sargassum is required to fully determine the risk to health and agriculture. Both protein and lipid levels were low. The ‘indispensable amino acid’ profile compares favourably with that recommended by the World Health Organisation. Lipids had a high proportion of Polyunsaturated Fatty Acids. The use of Sargassum for biogas production could be challenging, and further work is required.
Macroalgae represent a potential biomass source for the production of bioethanol or biogas. Their use, however, is limited by several factors including, but not restricted to, their continuous supply for processing, and low biofuel yields. This review examines recent pre-treatment processes that have been used to improve the yields of either biogas or bioethanol from macroalgae. Factors that can influence hydrolysis efficiency and, consequently, biofuel yields, are highly affected by macroalgal composition, including content of salts, heavy metals, and polyphenols, structural make-up, as well as polysaccharide composition and relative content of carbohydrates. Other factors that can influence biofuel yield include the method of storage and preservation.
The potential of algal biomass as a source of liquid and gaseous biofuels has been the subject of considerable research over the past few decades, with researchers strongly agreeing that algae have the potential of becoming a viable aquatic energy crop with a higher energy potential compared to that from either terrestrial biomass or municipal solid waste. However, neither microalgae nor seaweed are currently cultivated solely for energy purposes due to the high costs of harvesting, concentrating and drying. Anaerobic digestion of algal biomass could theoretically reduce costs associated with drying wet biomass before processing, but practical yields of biogas from digestion of many algae are substantially below the theoretical maximum. New processing methods are needed to reduce costs and increase the net energy balance. This review examines the biochemical and structural properties of seaweeds and of microalgal biomass that has been produced as part of the treatment of wastewater, and discusses some of the significant hurdles and recent initiatives for producing biogas from their anaerobic digestion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.