This paper presents a method for clustering short text documents, such as instant messages, SMS, or news headlines. Vocabularies in the texts are expanded using external knowledge sources and represented by a Distributed Word Representation. Clustering is done using the K-means algorithm with Word Mover's Distance as the distance metric. Experiments were done to compare the clustering quality of this method, and several leading methods, using large datasets from BBC headlines, SearchSnippets, StackExchange, and Twitter. For all datasets, the proposed algorithm produced document clusters with higher accuracy, precision, F1-score, and Adjusted Rand Index. We also observe that cluster description can be inferred from keywords represented in each cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.