Lignocellulose is a promising raw material for the production of second-generation biofuels. In this study, the effects of acid-catalyzed liquid hot water (LHW) on pretreatment of corn stover (CS) for subsequent hydrolysis and conversion to ethanol were studied. The effects of reaction temperature, acid concentration, and residence time on glucose yield were evaluated using a response surface methodology. The optimal condition was 162.4 °C for 29.5 min with 0.45% v/v of sulfuric acid, leading to the maximum glucose yield of 91.05% from enzymatic hydrolysis of the cellulose-enriched fraction. Conversion of the solid fraction to ethanol by simultaneous saccharification and fermentation resulted in a theoretical ethanol yield of 93.91% based on digestible glucose. Scanning electron microscopy revealed disruption on the microstructure of the pretreated CS. Increases of crystallinity index and surface area of the pretreated biomass were observed along with alteration in the functional group profiles, as demonstrated by Fourier transform infrared spectroscopy. This work provides an insight into the effects of LHW on the enzymatic susceptibility and modification of the physicochemical properties of CS for further application on bioethanol production in biorefinery.
Alkaline hydrogen peroxide pretreatment is an effectively enhance the increasing enzymatic digestibility of lignocellulosic biomass for conversion to fuels and chemicals in the biorefinery processes. In this study, effects of H 2 O 2 on monomeric sugar in the liquid fraction during hydrogen peroxide pretreatment and sugar after enzymatic hydrolysis from corncobs were studied under varying reaction conditions. The temperature (30-120 o C) and H 2 O 2 concentration (2.5-10%) efficiently promoted sugar yield in the piqued fraction and improved enzymatic hydrolysis of pretreated solids. The optimal condition for H 2 O 2 pretreatment of corncob (H 2 O 2 concentration of 5% using 60 o C for 2 h) increased hemicellulose solubilization into the aqueous phase, resulting into the maximized pentose yield of 61.88% (xylose + arabinose) in the aqueous phase. H 2 O 2 pretreatment under the optimal conditions at 60 o C for 2 h, leading to the enhance glucose yield from enzymatic hydrolysis of the pretreated biomass using 10 FPU/g CelluclastTM (85.66 %) and small amount of formation of inhibitory by-products. Combined with glucose in the aqueous phase, this resulted in the maxima 95.61% glucose recovery from the native corncob. This was related to changes in crystallinity and surface area of the pretreated biomass. Scanning electron microscopy (SEM) showed disruption of the intact biomass structure resulting increasing enzyme's accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by X-ray diffraction with a marked increase in surface area as revealed by BET measurement. The results provided efficiency of H2O2 pretreatment on increasing sugar recovery and an efficient approach for its processing in biorefinery industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.