Background: This study aimed to better characterize morbidly obese kidney transplant recipients, their clinical characteristics, and outcomes by using an unsupervised machine learning approach. Methods: Consensus cluster analysis was applied to OPTN/UNOS data from 2010 to 2019 based on recipient, donor, and transplant characteristics in kidney transplant recipients with a pre-transplant BMI ≥ 40 kg/m2. Key cluster characteristics were identified using the standardized mean difference. Post-transplant outcomes, including death-censored graft failure, patient death, and acute allograft rejection, were compared among the clusters. Results: Consensus clustering analysis identified 3204 kidney transplant recipients with a BMI ≥ 40 kg/m2. In this cohort, five clinically distinct clusters were identified. Cluster 1 recipients were predominantly white and non-sensitized, had a short dialysis time or were preemptive, and were more likely to receive living donor kidney transplants. Cluster 2 recipients were older and diabetic. They were likely to have been on dialysis >3 years and receive a standard KDPI deceased donor kidney. Cluster 3 recipients were young, black, and had kidney disease secondary to hypertension or glomerular disease. Cluster 3 recipients had >3 years of dialysis and received non-ECD, young, deceased donor kidney transplants with a KDPI < 85%. Cluster 4 recipients were diabetic with variable dialysis duration who either received non-ECD standard KDPI kidneys or living donor kidney transplants. Cluster 5 recipients were young retransplants that were sensitized. One-year patient survival in clusters 1, 2, 3, 4, and 5 was 98.0%, 94.4%, 98.5%, 98.7%, and 97%, and one-year death-censored graft survival was 98.1%, 93.0%, 96.1%, 98.8%, and 93.0%, respectively. Cluster 2 had the worst one-year patient survival. Clusters 2 and 5 had the worst one-year death-censored graft survival. Conclusions: With the application of unsupervised machine learning, variable post-transplant outcomes are observed among morbidly obese kidney transplant recipients. Recipients with earlier access to transplant and living donation show superior outcomes. Unexpectedly, reduced graft survival in cluster 3 recipients perhaps underscores socioeconomic access to post-transplant support and minorities being disadvantaged in access to preemptive and living donor transplants. Despite obesity-related concerns, one-year patient and graft survival were favorable in all clusters, and obesity itself should be reconsidered as a hard barrier to kidney transplantation.
Chronic kidney disease (CKD) poses a significant public health challenge, affecting approximately 11% to 13% of the global population [...]
Background: We aimed to develop and validate an automated machine learning (autoML) prediction model for cardiac surgery-associated acute kidney injury (CSA-AKI). Methods: Using 69 preoperative variables, we developed several models to predict post-operative AKI in adult patients undergoing cardiac surgery. Models included autoML and non-autoML types, including decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and artificial neural network (ANN), as well as a logistic regression prediction model. We then compared model performance using area under the receiver operating characteristic curve (AUROC) and assessed model calibration using Brier score on the independent testing dataset. Results: The incidence of CSA-AKI was 36%. Stacked ensemble autoML had the highest predictive performance among autoML models, and was chosen for comparison with other non-autoML and multivariable logistic regression models. The autoML had the highest AUROC (0.79), followed by RF (0.78), XGBoost (0.77), multivariable logistic regression (0.77), ANN (0.75), and DT (0.64). The autoML had comparable AUROC with RF and outperformed the other models. The autoML was well-calibrated. The Brier score for autoML, RF, DT, XGBoost, ANN, and multivariable logistic regression was 0.18, 0.18, 0.21, 0.19, 0.19, and 0.18, respectively. We applied SHAP and LIME algorithms to our autoML prediction model to extract an explanation of the variables that drive patient-specific predictions of CSA-AKI. Conclusion: We were able to present a preoperative autoML prediction model for CSA-AKI that provided high predictive performance that was comparable to RF and superior to other ML and multivariable logistic regression models. The novel approaches of the proposed explainable preoperative autoML prediction model for CSA-AKI may guide clinicians in advancing individualized medicine plans for patients under cardiac surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.