Artemisinin is an endoperoxide sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L. It has been widely used in South-East Asia and Africa as an effective drug against sensitive and multidrug-resistant Plasmodium falciparum malaria. A monoclonal antibody (mAb), designated as 3H2, was generated with artesunate-bovine serum albumin conjugate as the immunogen. mAb 3H2 was used to develop a highly sensitive and specific indirect competitive enzyme-linked immunosorbent assay (icELISA) for artemisinin. The concentration of analyte producing 50% of inhibition (IC(50)) and the working range of the icELISA were 1.3 and 0.2-5.8 ng/mL, respectively. The mAb 3H2 recognized the artemisinin analogs artesunate, dihydroartemisinin, and artemether with cross-reactivity of 650%, 57%, and 3%, respectively, but negligibly recognized deoxyartemisinin and the artemisinin precursors arteannuin B and artemisinic acid. The average recoveries of artemisinin fortified in A. annua samples at concentrations from 156 to 5,000 microg/g determined by icELISA ranged from 91% to 98%. The icELISA was applied for the determination of artemisinin in different wild A. annua samples and the results were confirmed by high-performance liquid chromatography (HPLC) analysis. The correlation coefficient (R(2)) between the two assays was larger than 0.99, demonstrating a good agreement between the icELISA and HPLC results. This ELISA is suitable for quality assurance of A. annua L. materials.
Methyl jasmonate (MeJA) and its free-acid form, jasmonic acid (JA) are naturally occurring plant growth regulators widely distributed in higher plants. In order to improve the sensitivity for the analysis of MeJA at low levels in small amounts of plant samples, a monoclonal antibody (MAb) (designated as MAb 3E(5)D(7)C(4)B(6)) against MeJA was derived from a JA-bovine serum albumin (BSA) conjugate as an immunogen. The antibody belongs to the IgG(1) subclass with a kappa type light chain and has a dissociation constant of approximately 6.07 x 10(-9) M. MAb3E(5)D(7)C(4)B(6) is very specific to MeJA. It was used to develop a direct competitive enzyme-linked immunosorbent assay (dcELISA), conventional and simplified indirect competitive ELISAs (icELISA). JA was derivatized into MeJA for the ELISA analysis. The IC(50) value and detection range for MeJA were, respectively, 34 and 4-257 ng/mL by the conventional icELISA, 21 and 3-226 ng/mL by the simplified icELISA and 5.0 and 0.7-97.0 ng/mL by the dcELISA. The dcELISA was more sensitive than either the conventional or simplified icELISA. The assays were used to measure the content of jasmonates as MeJA in tobacco leaves under drought stress or inoculated with tobacco mosaic virus and tomato leaves inoculated with tomato mosaic virus or Lirioinyza sativae Blanchard as compared with the corresponding healthy leaves. The increased jasmonates content indicated its role in response to the drought stress and pathogens.
Hybridomas secreting a monoclonal antibody (mAb) against the herbicide chlorimuron-ethyl (CE) were produced by fusing the mouse myeloma cell line (SP2/0) with splenocytes from a mouse immunized against the conjugate of the sulfonamide moiety of CE and bovine serum albumin (BSA). The mAb, designated 1F5C5A10, had very weak affinity with metsulfuron, ethametsulfuron, pyrazosulfuron, bensulfuron, and chlorsulfuron. Two mAb-based indirect competitive enzyme-linked immunosorbent assays (icELISA) were developed. A conventional icELISA (icELISA-I) showed a concentration of half-maximum inhibition (IC(50)) of 11.6 ng/mL with a dynamic range of 1.6-84 ng/mL. A simplified icELISA (icELISA-II) had an IC(50) of 28.7 ng/mL and a dynamic range of 2.2-372 ng/mL. The two assays were tested on spiked water and soil samples. CE (1-500 ng/mL) fortified in water samples could be analyzed directly without any sample preparation by both immunoassays with an average recovery between 74 and 114%. icELISA-II, but not icELISA-I, was able to accurately analyze the herbicide residues in the crude soil extracts with recoveries between 99 and 129% without obvious matrix effects due to its lesser amount of sample used. In contrast to icELISA-I, icELISA-II is more convenient, whereas it consumes more reagents of coating antigen and goat anti-mouse IgG-peroxidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.