BackgroundContrast-induced acute kidney injury (CI-AKI) occurs after the administration of intravenous iodinated contrast agents. Oxidative stress has been proposed as one of the most important mechanisms in the pathogenesis of CI-AKI. The objective of this study was to investigate the antioxidant effect of the extract from Phyllanthus emblica (PE) in preventing CI-AKI.MethodsMale Sprague Dawley rats were subjected into eight groups, were given water (control) or PE extract (125 or 250 or 500 mg/kg/day) for 5 days before the induction of CI-AKI. Renal function and oxidative stress markers; malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) activity were determined in plasma and renal tissue. Kidney sections were performed for histopathological examination.ResultsIn the contrast media (CM) group, increases in blood urea nitrogen and serum creatinine were demonstrated which correlated with severity of tubular necrosis, peritubular capillary congestion and interstitial edema. Moreover, an increase in MDA and a decrease in TAC SOD and CAT activity in CM group were significantly changed when compared with the control (P < 0.05). In contrast, CI-AKI-induced rats administrated with PE extract 250 and 500 mg/kg/day significantly preserved renal function and attenuated the severity of pathological damage (P < 0.05) as well as significantly lower MDA and higher TAC, SOD and CAT than the CM group (P < 0.05).ConclusionsThis study demonstrated the protective role of PE extract against CI-AKI.
This study aims to investigate the renoprotective effect of recombinant human erythropoietin (rhEPO) treatment could preserve tubular epithelial cell regeneration and ameliorate renal fibrosis by dual inhibition of stress-induced senescence and EMT in unilateral ureteric obstruction (UUO) mouse model. UUO or sham-operated mice were randomly assigned to receive rhEPO or vehicle treatment and were sacrificed on days 3, 7, and 14. Kidney specimens were fixed for histopathological and immunohistochemical study. The expression of S100A4, TGF-β1, BMP-7, Smad2/3, Smad1/5/8, and p16INK4a was determined by western blot and real-time RT-PCR. Vehicle treated UUO mice had increased tubular atrophy and interstitial fibrosis within 3 to 14 days. An increase in TGF-β1, Smad2/3, S100A4, and p16INK4a expression and a decrease in BMP-7 and Smad1/5/8 expression were observed in the obstructed kidneys. p16INK4a was positively correlated with TGF-β1/Smad2/3 and negatively correlated with BMP-7/Smad1/5/8 in UUO mice. rhEPO treatment significantly suppressed the upregulation of TGF-β, Smad2/3, S100A4, and p16INK4a and preserved the downregulation of BMP-7 and Smad1/5/8, resulting in markedly reduced TA/IF compared to the vehicle treated mice. The renoprotective effects of rhEPO could ameliorate renal TA/IF by modulating senescence and EMT which could be a part of therapeutic option in patients with chronic kidney disease.
Summary
This study revealed that the ethanolic bran extracts of 11 Thai pigmented (red and purple) and 2 nonpigmented rice varieties exerted scavenging activity against DPPH and ABTS radicals and ROS in HL‐60 cells in the following order: red > purple > nonpigmented rice. These rice extracts also showed the same order of phenolic and flavonoid contents, which were strongly correlated with their scavenging activity. Phenolic subtype analysis further indicated that proanthocyanidins as well as anthocyanins and protocatechuic acid contributed directly to antioxidant capacity in red and purple rice bran, respectively. In contrast, these pigmented rice bran extracts possessed moderate chelating activity partly attributed to their contents of phenolics and flavonoids, especially proanthocyanidins in red rice bran. Moreover, rice bran extracts significantly restored SOD and CAT activities in oxidative stress‐induced A549 cells. This study provides new insights on the intracellular potent antioxidant capacity of pigmented rice bran extracts in the cell‐based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.