A common assumption in the study of brain functional connectivity is that the brain network is stationarity. However it is increasingly recognized that the brain organization is prone to variations across the scanning session, fueling the need for dynamic connectivity approaches. One of the main challenges in developing such approaches is that the frequency and change points for the brain organization are unknown, with these changes potentially occurring frequently during the scanning session. In order to provide greater power tso detect rapidly evolving connectivity changes, we propose a fully automated two-stage approach which pools information across multiple subjects to estimate change points in functional connectivity, and subsequently estimates the brain networks within each state phase lying between consecutive change points. The number and positioning of the change points are unknown and learned from the data in the first stage, by modeling a time-dependent connectivity metric under a fused lasso approach. In the second stage, the brain functional network for each state phase is inferred via sparse inverse covariance matrices. We compare the performance of the method with existing dynamic connectivity approaches via extensive simulation studies, and apply the proposed approach to a saccade block task fMRI data.
Sensitizing Task-fMRI Signals in Aging task designs is necessary to improve the stability of predicting associated behavior. In summary, we recommend correction of task fMRI signals by covarying out baseline CBF especially when comparing groups with different neurovascular properties. Given that ASL and BOLD fMRI are well established and widely employed techniques, our proposed multi-modal methodology can be readily implemented into data processing pipelines to obtain more accurate BOLD activation maps.
Recently, there has been increased interest in fusing multimodal imaging to better understand brain organization by integrating information on both brain structure and function. In particular, incorporating anatomical knowledge leads to desirable outcomes such as increased accuracy in brain network estimates and greater reproducibility of topological features across scanning sessions. Despite the clear advantages, major challenges persist in integrative analyses including an incomplete understanding of the structure-function relationship and inaccuracies in mapping anatomical structures due to inherent deficiencies in existing imaging technology. This calls for the development of advanced network modeling tools that appropriately incorporate anatomical structure in constructing brain functional networks. We propose a hierarchical Bayesian Gaussian graphical modeling approach which models the brain functional networks via sparse precision matrices whose degree of edge specific shrinkage is a random variable that is modeled using both anatomical structure and an independent baseline component. The proposed approach adaptively shrinks functional connections and flexibly identifies functional connections supported by structural connectivity knowledge. This enables robust brain network estimation even in the presence of misspecified anatomical knowledge, while accommodating heterogeneity in the structure-function relationship. We implement the approach via an efficient optimization algorithm which yields maximum a posteriori estimates. Extensive numerical studies involving multiple functional network structures reveal the clear advantages of the proposed approach over competing methods in accurately estimating brain functional connectivity, even when the anatomical knowledge is misspecified up to a certain degree. An application of the approach to data from the Philadelphia Neurodevelopmental Cohort (PNC) study reveals gender based connectivity differences across multiple age groups, and higher reproducibility in the estimation of network metrics compared to alternative methods.
There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size.
Summary Biclustering techniques can identify local patterns of a data matrix by clustering feature space and sample space at the same time. Various biclustering methods have been proposed and successfully applied to analysis of gene expression data. While existing biclustering methods have many desirable features, most of them are developed for continuous data and few of them can efficiently handle -omics data of various types, for example, binomial data as in single nucleotide polymorphism data or negative binomial data as in RNA-seq data. In addition, none of existing methods can utilize biological information such as those from functional genomics or proteomics. Recent work has shown that incorporating biological information can improve variable selection and prediction performance in analyses such as linear regression and multivariate analysis. In this article, we propose a novel Bayesian biclustering method that can handle multiple data types including Gaussian, Binomial, and Negative Binomial. In addition, our method uses a Bayesian adaptive structured shrinkage prior that enables feature selection guided by existing biological information. Our simulation studies and application to multi-omics datasets demonstrate robust and superior performance of the proposed method, compared to other existing biclustering methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.