Abstract.Propositional model counting (#SAT), i.e., counting the number of satisfying assignments of a propositional formula, is a problem of significant theoretical and practical interest. Due to the inherent complexity of the problem, approximate model counting, which counts the number of satisfying assignments to within given tolerance and confidence level, was proposed as a practical alternative to exact model counting. Yet, approximate model counting has been studied essentially only theoretically. The only reported implementation of approximate model counting, due to Karp and Luby, worked only for DNF formulas. A few existing tools for CNF formulas are bounding model counters; they can handle realistic problem sizes, but fall short of providing counts within given tolerance and confidence, and, thus, are not approximate model counters.We present here a novel algorithm, as well as a reference implementation, that is the first scalable approximate model counter for CNF formulas. The algorithm works by issuing a polynomial number of calls to a SAT solver. Our tool, ApproxMC, scales to formulas with tens of thousands of variables. Careful experimental comparisons show that ApproxMC reports, with high confidence, bounds that are close to the exact count, and also succeeds in reporting bounds with small tolerance and high confidence in cases that are too large for computing exact model counts.
Abstract. Constrained-random verification (CRV) is widely used in industry for validating hardware designs. The effectiveness of CRV depends on the uniformity of test stimuli generated from a given set of constraints. Most existing techniques sacrifice either uniformity or scalability when generating stimuli. While recent work based on random hash functions has shown that it is possible to generate almost uniform stimuli from constraints with 100,000+ variables, the performance still falls short of today's industrial requirements. In this paper, we focus on pushing the performance frontier of uniform stimulus generation further. We present a random hashing-based, easily parallelizable algorithm, UniGen2, for sampling solutions of propositional constraints. UniGen2 provides strong and relevant theoretical guarantees in the context of CRV, while also offering significantly improved performance compared to existing almostuniform generators. Experiments on a diverse set of benchmarks show that UniGen2 achieves an average speedup of about 20× over a state-ofthe-art sampling algorithm, even when running on a single core. Moreover, experiments with multiple cores show that UniGen2 achieves a nearlinear speedup in the number of cores, thereby boosting performance even further.
Functional verification constitutes one of the most challenging tasks in the development of modern hardware systems, and simulationbased verification techniques dominate the functional verification landscape. A dominant paradigm in simulation-based verification is directed random testing, where a model of the system is simulated with a set of random test stimuli that are uniformly or near-uniformly distributed over the space of all stimuli satisfying a given set of constraints. Uniform or near-uniform generation of solutions for large constraint sets is therefore a problem of theoretical and practical interest. For boolean constraints, prior work offered heuristic approaches with no guarantee of performance, and theoretical approaches with proven guarantees, but poor performance in practice. We offer here a new approach with theoretical performance guarantees and demonstrate its practical utility on large constraint sets.
Given a relational specification between Boolean inputs and outputs, the goal of Boolean functional synthesis is to synthesize each output as a function of the inputs such that the specification is met. In this paper, we first show that unless some hard conjectures in complexity theory are falsified, Boolean functional synthesis must generate large Skolem functions in the worst-case. Given this inherent hardness, what does one do to solve the problem? We present a two-phase algorithm, where the first phase is efficient both in terms of time and size of synthesized functions, and solves a large fraction of benchmarks. To explain this surprisingly good performance, we provide a sufficient condition under which the first phase must produce correct answers. When this condition fails, the second phase builds upon the result of the first phase, possibly requiring exponential time and generating exponential-sized functions in the worst-case. Detailed experimental evaluation shows our algorithm to perform better than other techniques for a large number of benchmarks.
Constrained-random simulation is the predominant approach used in the industry for functional verification of complex digital designs. The effectiveness of this approach depends on two key factors: the quality of constraints used to generate test vectors, and the randomness of solutions generated from a given set of constraints. In this paper, we focus on the second problem, and present an algorithm that significantly improves the state-of-the-art of (almost-)uniform generation of solutions of large Boolean constraints. Our algorithm provides strong theoretical guarantees on the uniformity of generated solutions and scales to problems involving hundreds of thousands of variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.