Donor age is one of the major concerns in bone marrow transplantation, as the aged hematopoietic stem cells (HSCs) fail to engraft efficiently. Here, using murine system, we show that a brief interaction of aged HSCs with young mesenchymal stromal cells (MSCs) rejuvenates them and restores their functionality via inter-cellular transfer of microvesicles (MVs) containing autophagy-related mRNAs. Importantly, we show that MSCs gain activated AKT signaling as a function of aging. Activated AKT reduces the levels of autophagy-related mRNAs in their MVs, and partitions miR-17 and miR-34a into their exosomes, which upon transfer into HSCs downregulate their autophagy-inducing mRNAs. Our data identify previously unknown mechanisms operative in the niche-mediated aging of HSCs. Inhibition of AKT in aged MSCs increases the levels of autophagy-related mRNAs in their MVs and reduces the levels of miR-17 and miR-34a in their exosomes. Interestingly, transplantation experiments showed that the rejuvenating power of these "rescued" MVs is even better than that of the young MVs. We demonstrate that such ex vivo rejuvenation of aged HSCs could expand donor cohort and improve transplantation efficacy. Stem Cells 2018;36:420-433.
Marrow adipocytes pose a significant problem in post-transplant regeneration of hematopoiesis owing to their negative effects on regeneration of hematopoiesis. However, the precise mechanism operative in this negative regulation is not clear. In this study, we show that marrow adipocytes express neuropilin-1 (NRP1) as a function of differentiation and inhibit regeneration of hematopoiesis by three principal mechanisms: one, by inducing apoptosis in hematopoietic stem/progenitor cells (HSPCs) through the death receptor-mediated pathway; two, by downregulating CXCR4 expression on the HSPCs through ligand-mediated internalization; and three, by secreting copious amounts of transforming growth factor β1 (TGFβ1), a known inhibitor of hematopoiesis. Silencing of NRP1 in these adipocytes rescued the apoptosis of cocultured HSPCs and boosted the CXCR4 surface expression on them, showing an active role of NRP1 in these processes. However, such silencing had no effect on TGFβ1 secretion and consequent inhibition of hematopoiesis by them, showing that secretion of TGFβ1 by adipocytes is independent of NRP1 expression by them. Surprisingly, mesenchymal stromal cells modified with NRP1 supported expansion of HSPCs having enhanced functionality, suggesting that NRP1 exerts a context-dependent effect on hematopoiesis. Our data demonstrate that NRP1 is an important niche component and exerts context-dependent effects on HSPCs. Based on these data, we speculate that antibody- or peptide-mediated blocking of NRP1-HSC interactions coupled with a pharmacological inhibition of TGFβ1 signaling may help in combating the negative regulation of post-transplant regeneration of hematopoiesis in a more effective manner.
Pre-transplant myeloablation is associated with marrow adipogenesis, resulting in delayed engraftment of hematopoietic stem cells (HSCs). This is strongly undesirable, especially when the donor HSCs are fewer in numbers or have compromised functionality. The molecular mechanisms behind irradiation-induced marrow adipogenesis have not been extensively investigated. Here we show that bone marrow (BM) cells, especially T-cells and stromal cells, express and secrete copious amounts of BMP4 in response to irradiation, which causes the bone marrow stromal cells to commit to adipocyte lineage, thereby contributing to an increase in bone marrow adipogenesis. We further demonstrate that Simvastatin inhibits the BMP4-mediated adipogenic commitment of marrow stromal cells by inhibiting Ppar-γ expression. Importantly, Simvastatin does not prevent BMP4 secretion by the BM cells, and thus does not interfere with its salutary role in post-transplant hematopoietic regeneration. Our data identify previously unknown mechanisms operative in marrow adipogenesis post-myeloablation. They also reveal the molecular mechanisms behind the advantage of using Simvastatin as a niche-targeting agent to improve HSC engraftment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.