A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20°C versus a 15°C to 25°C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 µmol photons m−2 s−1. No differences in algal growth (Chlorophyll a) were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production.
Multi-wavelength chlorophyll fluorescence analysis was utilised to examine the photosynthetic efficiency of the biofuel-producing alga Nannochloropsis oculata, grown under two light regimes; low (LL) and high (HL) irradiance levels. Wavelength dependency was evident in the functional absorption cross-section of Photosystem II (σII(λ)), absolute electron transfer rates (ETR(II)), and non-photochemical quenching (NPQ) of chlorophyll fluorescence in both HL and LL cells. While σII(λ) was not significantly different between the two growth conditions, HL cells upregulated ETR(II) 1.6-1.8-fold compared to LL cells, most significantly in the wavelength range of 440-540 nm. This indicates preferential utilisation of blue-green light, a highly relevant spectral region for visible light in algal pond conditions. Under these conditions, the HL cells accumulated saturated fatty acids, whereas polyunsaturated fatty acids were more abundant in LL cells. This knowledge is of importance for the use of N. oculata for fatty acid production in the biofuel industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.