Optimization of a two-wheeler hybrid electric vehicle (HEV) is a typical challenge compared to that for four-wheeler HEVs. Some of the challenges which are particular to two-wheeler HEVs are throttle integration, smooth switching between power sources, add-on weight compensation, efficiency improvisation in traffic, and energy optimization. Two power sources need to be synchronized skillfully for optimum energy utilization. A prominent variant of HEV is that it easily converts conventional scooters into parallel hybrids by “Through-the-Road (TTR)” architecture. This paper focuses on three switching control strategies of HEVs based on the state of charge, fuzzy logic, and neural network. Further, to optimize energy usage, all these control strategies are compared. Energy management control for the TTR model is developed with vehicle parameters in the Simulink environment and simulated using the “World Harmonized Motorcycle Test Cycle” (WMTC) drive cycle. The multivariable input model is presented with a fuzzy rule-based hybrid switching control. A similar system is also modeled with a neural network-based decision control and the observations are tabulated for the fuel economy and energy management. Simulation results show that the neural network-based optimization results in minimal energy consumption among all three hybrid operations.
Drive cycle a is primary information useful for analyzing, designing, and optimizing automotive controllers for vehicle homologation. Conventional and electric vehicles are tested and certified based on the specified standard driving cycles as per vehicle category for emission compliance and energy consumption, respectively. In countries such as India, this drive cycle fails to conceal the real-time drive cycles on urban roads with heavy traffic. This real-time drive cycle details the driving skill, congestion, road characteristics, acceleration and deceleration durations, etc. In this context, the real-time drive cycle is captured with the help of an Inertial Measurement Unit. Analysis of IMU measured data with a suitable sampling rate is carried out and energy characterizations are presented in this article. For better accuracy, the IMU data logger is set for an 8 Hz sampling rate which logs the vehicle dynamics data of a scooter. For urban traffic data collection, Pune city is selected and actual energy spent is estimated with the engine, electric, and hybrid modes. State of Charge based switching is carried out with the help of a hybrid controller and observations are tabulated. State of Charge thresholds are monitored and energy-efficient switching is decided. It is estimated from the results that hybrid conversion of a scooter is more efficient due to charge/regeneration into a Lithium-ion battery when the engine powers the wheel and while braking. The range is extended with the above configuration, and further can be increased based on higher battery capacity. Energy management is better handled with a hybrid electric controller for urban roads. Range anxiety issues of EV are lowered in HEV configuration and it is also estimated that parallel Hybrid scooters are more energy-efficient and release lower carbon emissions than conventional vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.