. Visually guided movements can be inaccurate, especially if unexpected events occur while the movement is programmed. Often errors of gaze are corrected before external feedback can be processed. Evidence is presented from macaque monkey frontal eye field (FEF), a cortical area that selects visual targets, allocates attention, and programs saccadic eye movements, for a neural mechanism that can correct saccade errors before visual afferent or performance monitoring signals can register the error. Macaques performed visual search for a color singleton that unpredictably changed position in a circular array as in classic double-step experiments. Consequently, some saccades were directed in error to the original target location. These were followed frequently by unrewarded, corrective saccades to the final target location. We previously showed that visually responsive neurons represent the new target location even if gaze shifted errantly to the original target location. Now we show that the latency of corrective saccades is predicted by the timing of movement-related activity in the FEF. Preceding rapid corrective saccades, the movement-related activity of all neurons began before explicit error signals arise in the medial frontal cortex. The movement-related activity of many neurons began before visual feedback of the error was registered and that of a few neurons began before the error saccade was completed. Thus movement-related activity leading to rapid corrective saccades can be guided by an internal representation of the environment updated with a forward model of the error.
Murthy A, Ray S, Shorter SM, Schall JD, Thompson KG. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. J Neurophysiol 101: 2485-2506, 2009. First published March 4, 2009 doi:10.1152/jn.90824.2008. The dynamics of visual selection and saccade preparation by the frontal eye field was investigated in macaque monkeys performing a search-step task combining the classic double-step saccade task with visual search. Reward was earned for producing a saccade to a color singleton. On random trials the target and one distractor swapped locations before the saccade and monkeys were rewarded for shifting gaze to the new singleton location. A race model accounts for the probabilities and latencies of saccades to the initial and final singleton locations and provides a measure of the duration of a covert compensation process-targetstep reaction time. When the target stepped out of a movement field, noncompensated saccades to the original location were produced when movement-related activity grew rapidly to a threshold. Compensated saccades to the final location were produced when the growth of the original movement-related activity was interrupted within target-step reaction time and was replaced by activation of other neurons producing the compensated saccade. When the target stepped into a receptive field, visual neurons selected the new target location regardless of the monkeys' response. When the target stepped out of a receptive field most visual neurons maintained the representation of the original target location, but a minority of visual neurons showed reduced activity. Chronometric analyses of the neural responses to the target step revealed that the modulation of visually responsive neurons and movement-related neurons occurred early enough to shift attention and saccade preparation from the old to the new target location. These findings indicate that visual activity in the frontal eye field signals the location of targets for orienting, whereas movement-related activity instantiates saccade preparation. I N T R O D U C T I O NTo investigate the neural basis of the decision processes of saccade target selection, we have recorded neural activity in the frontal eye field (FEF) of macaque monkeys trained to perform visual search tasks (Bichot and Schall 1999; Bichot et al.
The capacity to detect and correct errors is thought to engage cognitive control. To probe the nature of such control in relation to eye movements, subjects performed a double-step task under different instructions: to FOLLOW the appearance of successive targets; or to cancel the initial saccade and REDIRECT gaze to the final target location. Saccade sequences occurred in the FOLLOW and REDIRECT conditions where they represented correct and corrective behaviour, respectively. We observed that corrective responses were faster than correct responses, and concurrent preparation of saccades was facilitated during error correction. These results are consistent with psychological theories that posit supervisory cognitive control over action during error correction.
In the previous studies on the neural control of saccade initiation using the countermanding paradigm, movement and visuomovement neurons in the frontal eye field were grouped as movement-related neurons. The activity of both types of neurons was modulated when a saccade was inhibited in response to a stop signal, and this modulation occurred early enough to contribute to the control of the saccade initiation. We now report a functional difference between these two classes of neurons when saccades are produced. Movement neurons exhibited a progressive accumulation of discharge rate following target presentation that triggered a saccade when it reached a threshold. When saccades were inhibited with lower probability in response to a stop signal appearing at longer delays, this accumulating activity was interrupted at levels progressively closer to the threshold. In contrast, visuomovement neurons exhibited a maintained elevated discharge rate following target presentation that was followed by a further enhancement immediately before the saccade initiation. When saccades were inhibited in response to a stop signal, the late enhancement was absent and the maintained activity decayed regardless of stop-signal delay. These results demonstrate that the activity of movement neurons realizes the progressive commitment to the saccade initiation modeled by the activation of the go unit in computational models of countermanding performance. The lack of correspondence of the activity of visuomovement neurons with any elements of these models indicates that visuomovement neurons perform a function other than the saccade preparation such as a corollary discharge to update visual processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.