ObjectiveEsophagogastroduodenoscopy (EGD) is the pivotal procedure in the diagnosis of upper gastrointestinal lesions. However, there are significant variations in EGD performance among endoscopists, impairing the discovery rate of gastric cancers and precursor lesions. The aim of this study was to construct a real-time quality improving system, WISENSE, to monitor blind spots, time the procedure and automatically generate photodocumentation during EGD and thus raise the quality of everyday endoscopy.DesignWISENSE system was developed using the methods of deep convolutional neural networks and deep reinforcement learning. Patients referred because of health examination, symptoms, surveillance were recruited from Renmin hospital of Wuhan University. Enrolled patients were randomly assigned to groups that underwent EGD with or without the assistance of WISENSE. The primary end point was to ascertain if there was a difference in the rate of blind spots between WISENSE-assisted group and the control group.ResultsWISENSE monitored blind spots with an accuracy of 90.40% in real EGD videos. A total of 324 patients were recruited and randomised. 153 and 150 patients were analysed in the WISENSE and control group, respectively. Blind spot rate was lower in WISENSE group compared with the control (5.86% vs 22.46%, p<0.001), and the mean difference was −15.39% (95% CI −19.23 to −11.54). There was no significant adverse event.ConclusionsWISENSE significantly reduced blind spot rate of EGD procedure and could be used to improve the quality of everyday endoscopy.Trial registration numberChiCTR1800014809; Results.
Aberrant expression of miR-196a has been frequently reported in cancer studies. However, the expression and mechanism of its function in gastric cancer remains unclear. Quantitative real-time PCR was carried out to detect the relative expression of miR-196a in gastric cancer cell lines and tissues. SGC7901 cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cell proliferation. Higher expression of miR-196a in gastric cancer tissues was associated with tumor size, a higher clinical stage, and was also correlated with shorter overall survival of patients with gastric cancer. Exogenous downregulation of miR-196a expression significantly suppressed the in vitro cell-cycle progression, proliferation, and colony formation of gastric cancer cells, and ectopic miR-196a expression significantly enhanced the development of tumors in nude mice. Luciferase assays revealed that miR-196a inhibited p27 kip1 expression by targeting one binding site in the 3 0 -untranslated region (3 0 -UTR) of p27 kip1 mRNA. qPCR and Western blot assays verified that miR-196a reduced p27 kip1 expression at both mRNA and protein levels. The p27 kip1 -mediated repression in cell proliferation was reverted by exogenous miR-196a expression. A reverse correlation between miR-196a and p27 kip1 expression was noted in gastric cancer tissues. Our study shows that aberrant overexpression of miR-196a and consequent downregulation of p27 kip1 could contribute to gastric carcinogenesis and would be targets for gastric cancer therapies and further developed as potential prognostic factors.
Novel flowerlike nanostructures consisting of Cu 2 O nanopetals were successfully synthesized by a facile wet chemical method for the first time. The synthesized products were systematically studied by X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that the nucleation and growth of the nanoflowers were governed by a nucleation-dissolution-recrystallization growth mechanism. It is noteworthy that the initially formed Cu 2 O nanoparticles without addition of NaOH were crucial to the growth of the final nanoarchitectures. A UV-vis spectrum was used to estimate the band gap energies of the nanoflowers. Further control experiments were also carried out to investigate the factors that impact the morphology and size of the products. It was demonstrated that the concentrations of NaOH and cetyltrimethylammonium bromide (CTAB) play key roles in the formation of the as-synthesized nanoflowers. By adjusting the concentration of NaOH and CTAB, temperature, and the quantity of water, Cu 2 O micrograss, nanorods, and pricky microrods can be synthesized accordingly. Our stepwise synthetic method may shed some light on the design of other well-defined complex nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.