Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
It is well known that an excess of hydroxyl radicals (•OH) in the human body is responsible for oxidative stress-related diseases. An understanding of the relationship between the concentration of...
A composite sensor consisting of two separate inorganic layers of Prussian blue (PB) and a composite of cerium oxide nanoparticles (CeNPs) and graphene oxide (GO), is tested with •OH radicals. The signals from the interaction between the composite layers and •OH radicals are characterized using cyclic voltammetry (CV). The degradation of PB in the presence of H2O2 and •OH radicals is observed and its impact on the sensor efficiency is investigated. The results show that the composite sensor differentiates between the solutions with and without •OH radicals by the increase of electrochemical redox current in the presence of •OH radicals. The redox response shows a linear relation with the concentration of •OH radicals where the limit of detection, LOD, is found at 60 µM (100 µM without the PB layer). When additional composite layers are applied on the composite sensor to prevent the degradation of PB layer, the PB layer is still observed to be degraded. Furthermore, the sensor conductivity is found to decrease with the additional layers of composite. Although the CeNP/GO/PB composite sensor demonstrates high sensitivity with •OH radicals at low concentrations, it can only be used once due to the degradation of PB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.