Nature-inspired optimization algorithms have become useful in solving di±cult optimization problems in di®erent disciplines. Since the introduction of evolutionary algorithms several studies have been conducted on the development of metaheuristic optimization algorithms. Most of these algorithms are inspired by biological phenomenon. In this paper, we introduce a new algorithm inspired by prey-predator interaction of animals. In the algorithm randomly generated solutions are assigned as a predator and preys depending on their performance on the objective function. Their performance can be expressed numerically and is called the survival value. A prey will run towards the pack of preys with better surviving values and away from the predator. The predator chases the prey with the smallest survival value. However, the best prey or the prey with the best survival value performs a local search. Hence the best prey focuses fully on exploitation while the other solution members focus on the exploration of the solution space. The algorithm is tested on selected well-known test problems and a comparison is also done between our algorithm, genetic algorithm and particle swarm optimization. From the simulation result, it is shown that on the selected test problems prey-predator algorithm performs better in achieving the optimal value.
Firefly algorithm is one of the new metaheuristic algorithms for optimization problems. The algorithm is inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will be considered as fireflies, and brightness is assigned depending on their performance on the objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to a brighter firefly, and if there is no brighter firefly, it will move randomly. In this paper we modify this random movement of the brighter firefly by generating random directions in order to determine the best direction in which the brightness increases. If such a direction is not generated, it will remain in its current position. Furthermore the assignment of attractiveness is modified in such a way that the effect of the objective function is magnified. From the simulation result it is shown that the modified firefly algorithm performs better than the standard one in finding the best solution with smaller CPU time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.