One of the primary challenges facing Urban Air Mobility (UAM) and the safe integration of Unmanned Aircraft Systems (UAS) in the urban airspace is the availability of robust, reliable navigation and Sense-and-Avoid (SAA) systems. Global Navigation Satellite Systems (GNSS) are typically the primary source of positioning for most air and ground vehicles and for a growing number of UAS applications; however, their performance is frequently inadequate in such challenging environments. This paper performs a comprehensive analysis of GNSS performance for UAS operations with a focus on failure modes in urban environments. Based on the analysis, a guidance strategy is developed which accounts for the influence of urban structures on GNSS performance. A simulation case study representative of UAS operations in urban environments is conducted to assess the validity of the proposed approach. Results show improved accuracy (approximately 25%) and availability when compared against a conventional minimum-distance guidance strategy.
This is the author pre-publication version. This paper does not include the changes arising from the revision, formatting and publishing processes. The final version that should be used for referencing is:
Recent evolutions of the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) concept are driving the introduction of new airspace structures and classifications, which must be suitable for low-altitude airspace and provide the required level of safety and flexibility, particularly in dense urban and suburban areas. Therefore, airspace classifications and structures need to evolve based on appropriate performance metrics, while new models and tools are needed to address UTM operational requirements, with an increasing focus on the coexistence of manned and unmanned Urban Air Mobility (UAM) vehicles and associated Communication, Navigation and Surveillance (CNS) infrastructure. This paper presents a novel airspace model for UTM adopting Performance-Based Operation (PBO) criteria, and specifically addressing urban airspace requirements. In particular, a novel airspace discretisation methodology is introduced, which allows dynamic management of airspace resources based on navigation and surveillance performance. Additionally, an airspace sectorisation methodology is developed balancing the trade-off between communication overhead and computational complexity of trajectory planning and re-planning. Two simulation case studies are conducted: over the skyline and below the skyline in Melbourne central business district, utilising Global Navigation Satellite Systems (GNSS) and Automatic Dependent Surveillance-Broadcast (ADS-B). The results confirm that the proposed airspace sectorisation methodology promotes operational safety and efficiency and enhances the UTM operators’ situational awareness under dense traffic conditions introducing a new effective 3D airspace visualisation scheme, which is suitable both for mission planning and pre-tactical UTM operations. Additionally, the proposed performance-based methodology can accommodate the diversity of infrastructure and vehicle performance requirements currently envisaged in the UTM context. This facilitates the adoption of this methodology for low-level airspace integration of UAS (which may differ significantly in terms of their avionics CNS capabilities) and set foundations for future work on tactical online UTM operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.