Deploying earth abundant copper as a redox mediator in dye-sensitized solar cells (DSCs) has been found to be a very promising strategy to achieve higher photovoltage and power conversion efficiencies in full sun (100 mW cm−2) and in low/diffuse light conditions.
Dye-sensitized solar cells (DSCs) are proved to be one among the best photovoltaic approach for harnessing indoor/artificial light. Herein, we report two new molecularly engineered cost-effective metal-free carbazole based D-π-A...
The synthesis and characterisation of two terpyridine based ruthenium/palladium heteronuclear compounds are presented. The photocatalytic behaviour of the Ru/Pd complex containing the linear 2,2′:5′,2′′-terpyridine bridge (1a) and its analogue the non-linear 2,2′:6′,2′′-terpyridine bridge (2a) are compared together with the respective mononuclear complexes 1 and 2. Irradiation of 1a with visible light (e.g., 470 nm) results in the photocatalytic generation of dihydrogen gas. Photocatalysis was not observed with complex 2a by contrast. A comparison with the photocatalytic behaviour of the precursors 1 and 2 indicates, that while for 1a the photocatalysis is an intramolecular process, for the mononuclear precursors it is intermolecular. The photophysical and electrochemical properties of the mono-and heterobinuclear compounds are compared. Raman spectroscopy and DFT calculations indicate that there are substantial differences in the nature of the lowest energy 3 MLCT states of 1a and 2a, from which the contrasting photocatalytic activities of the complexes can be understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.