ABSTRACT-cell population resident within collagenase-treated, culture-processed bone fragments, which upon migration established a homogeneous population of MPCs. Additionally, we have introduced a system of culturing these MPCs that best supports and maintains their optimal differentiation potential during long-term culture expansion. When cultured as described, the trabecular bone-derived cells display stem cell-like capabilities, characterized by a stable undifferentiated phenotype as well as the ability to proliferate extensively while retaining the potential to differentiate along the osteoblastic, adipocytic, and chondrocytic lineages, even when maintained in long-term in vitro culture.
In vitro cultures of primary, human trabecular bone-derived cells represent a useful system for investigation of the biology of osteoblasts. Our recent discovery of the multilineage mesenchymal differentiation potential of trabecular bone-derived cells suggests the potential application of these cells as mesenchymal progenitors for tissue repair and regeneration. Such applications are crucially dependent on efficient cell-isolation protocols to yield cells that optimally proliferate and differentiate. In this study, we describe a simple, high-yield procedure, requiring minimal culture expansion, for the isolation of mesenchymal progenitor cells from human trabecular bone. Moreover, these cells retain their ability to differentiate along multiple mesenchymal lineages through successive subculturing. Cell populations isolated and cultured as described here allow the efficient acquisition of a clinically significant number of cells, which may be used as the cell source for tissue-engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.