Data analysis applications typically aggregate data across many dimensions looking for anomalies or unusual patterns. The SQL aggregate functions and the GROUP BY operator produce zero-dimensional or onedimensional aggregates.Applications need the Ndimensional generalization of these operators. This paper defines that operator, called the data cube or simply cube. The cube operator generalizes the histogram, cross-tabulation, roll-up, drill-down, and sub-total constructs found in most report writers. The novelty is that cubes are relations. Consequently, the cube operator can be imbedded in more complex non-procedural data analysis programs. The cube operator treats each of the N aggregation attributes as a dimension of N-space. The aggregate of a particular set of attribute values is a point in this space. The set of points forms an N-dimensional cube. Super-aggregates are computed by aggregating the N-cube to lower dimensional spaces. This paper (1) explains the cube and roll-up operators, (2) shows how they fit in SQL, (3) explains how users can define new aggregate functions for cubes, and (4) discusses efficient techniques to compute the cube. Many of these features are being added to the SQL Standard.
Data warehousing and on-line analytical processing (OLAP) are essential elements of decision support, which has increasingly become a focus of the database industry. Many commercial products and services are now available, and all of the principal database management system vendors now have offerings in these areas. Decision support places some rather different requirements on database technology compared to traditional on-line transaction processing applications. This paper provides an overview of data warehousing and OLAP technologies, with an emphasis on their new requirements. We describe back end tools for extracting, cleaning and loading data into a data warehouse; multidimensional data models typical of OLAP; front end client tools for querying and data analysis; server extensions for efficient query processing; and tools for metadata management and for managing the warehouse. In addition to surveying the state of the art, this paper also identifies some promising research issues, some of which are related to problems that the database research community has worked on for years, but others are only just beginning to be addressed. This overview is based on a tutorial that the authors presented at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.