We fabricated large area infrared photodetector devices from thin film of chemically reduced graphene oxide (RGO) sheets and studied their photoresponse as a function of laser position. We found that the photocurrent either increases, decreases or remain almost zero depending upon the position of the laser spot with respect to the electrodes. The position sensitive photoresponse is explained by Schottky barrier modulation at the RGO film-electrode interface. The time response of the photocurrent is dramatically slower than single sheet of graphene possibly due to disorder from the chemically synthesis and interconnecting sheets.
We report a new synthesis process of colloidal indium (In) doped zinc oxide (ZIO) nanocrystals by a hot injection technique. By fine tuning the synthesis we reached the same nucleation temperature for indium oxide and zinc oxide which helped us to study a dopant precursor dependent In incorporation into the ZnO matrix by using different In sources. The dopant induced shape evolution changes the hexagonal pyramid structured ZnO to a platelet like structure upon 8% In doping. The introduction of trivalent In(3+) into the ZnO lattice and consequent substitution of divalent Zn(2+) generates free electrons in the conduction band which produces a plasmonic resonance in the infrared region. The electron concentration controls plasmon frequency as well as the band gap of host ZnO. The variation of the band gap and the modification of the conduction band have been explained by the Burstein-Moss effect and Mie's theory respectively. The In dopant changes the defect chemistry of pure ZnO nanocrystals which has been studied by photoluminescence and other spectroscopic measurements. The nanocrystals are highly stable in the organic medium and can be deposited as a crack free thin film on different substrates. Careful ligand exchange and thermal annealing of the spin cast film lead to a good conductive film (720 Ω per square to 120 Ω per square) with stable inherent plasmonic absorption in the infrared and 90% transmittance in the visible region. A temperature induced metal-semiconductor transition was found for doped ZnO nanocrystals. The transition temperature shifts to a lower temperature with increase of the doping concentration.
Direct
cell translocation of nanomaterials is preferred over the
endocytotic uptake for various subcellular targeting applications
that can bypass the lysosomal trafficking/degradation. Although arginine-rich
cell-penetrating peptides are routinely used for cell transfection
of wider range materials from molecule to nanoparticle, the direct
cell translocation of nanoparticle is not a routine approach, particularly
because of the predominate endocytotic uptake. Here we report arginine-terminated,
designed nanoparticle of 15–30 nm hydrodynamic size that enters
into cell via direct translocation. We found that direct cell translocation
of nanoparticle is very efficient without localization at any specific
subcellular compartment for 12–24 h. This study shows that
nanomaterial can be chemically designed for direct cell translocation
and for cytosolic delivery without any biomembrane-coated endosome
that can be employed for subcellular targeting applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.