SARS-CoV-2 is the novel coronavirus causing the COVID-19 pandemic. To enter human cells, the receptor-binding domain (RBD) of the S1 subunit of SARS-CoV-2 (SARS-CoV-2-RBD) initially binds to the peptidase domain of angiotensin-converting enzyme 2 receptor (ACE2-PD). Using peptides to inhibit SARS-CoV-2-RBD binding to ACE2 is a potential therapeutic solution for COVID-19. A previous study identified a 23-mer peptide (SBP1) that bound to SARS-CoV-2-RBD with comparable K D to ACE2. We employed computational protein design and molecular dynamics (MD) to design SARS-CoV-2-RBD 25-mer peptide binders (SPB25) with better predicted binding affinity than SBP1. Using residues 21−45 of the α1 helix of ACE2-PD as the template, our strategy is employing Rosetta to enhance SPB25 binding affinity to SARS-CoV-2-RBD and avoid disrupting existing favorable interactions by using residues that have not been reported to form favorable interactions with SARS-CoV-2-RBD as designed positions. Designed peptides with better predicted binding affinities, by Rosetta, than SPB25 were subjected to MD validation. The MD results show that five designed peptides (SPB25 F8N , SPB25 F8R , SPB25 L25R , SPB25 F8N/L25R , and SPB25 F8R/L25R ) have better predicted binding affinities, by the MM-GBSA method, than SPB25 and SBP1. This study developed an approach to design SARS-CoV-2-RBD peptide binders, and these peptides may be promising candidates as potential SARS-CoV-2 inhibitors.
Cells can sense mechanical force in regulating focal adhesion assembly. One vivid example is the force-induced recruitment of vinculin to reinforce initial contacts between a cell and the extracellular matrix. Crystal structures of the unbound proteins and bound complex between the vinculin head subdomain (Vh1) and the talin vinculin binding site 1 (VBS1) indicate that vinculin undergoes a conformational change upon binding to talin. However, the molecular basis for this event and the precise nature of the binding pathway remain elusive. In this article, molecular dynamics is used to investigate the binding mechanism of Vh1 and VBS1 under minimal constraints to facilitate binding. One simulation demonstrates binding of the two molecules in the complete absence of external force. VBS1 makes early hydrophobic contact with Vh1 by positioning the critical hydrophobic residues (L608, L615, and L622) in the groove formed by helices 1 and 2 of Vh1. The solvent-exposed hydrophobic residues (V619 and L623) then gradually penetrate the hydrophobic core of Vh1, thus further separating helix 1 from helix 2. These critical residues are highly conserved as large hydrophobic side groups in other vinculin binding sites; studies also have demonstrated that these residues are essential in Vh1-VBS1 binding. Similar binding mechanisms are also demonstrated in separate molecular dynamics simulations of Vh1 binding to other vinculin binding sites both in talin and alpha-actinin.
Advanced oral squamous cell carcinoma (OSCC) is typically aggressive and closely correlated with disease recurrence and poor survival. Multidrug resistance (MDR) is the most critical problem leading to therapeutic failure. Investigation of novel anticancer candidates targeting multidrug-resistant OSCC cells may provide a basis for developing effective strategies for OSCC treatment. In the present study, we investigated the cytotoxic mechanism of a carbazole alkaloid, namely isomahanine, in a multidrug‑resistant OSCC cell line CLS-354/DX. We demonstrated that CLS-354/DX cells overexpressing multidrug resistance-associated protein 1 (MRP1) were resistant to anticancer drugs cisplatin and camptothecin. Isomahanine effectively induced cytotoxicity against CLS-354/DX cells regardless of resistance. Apoptosis as determined by FITC‑Annexin V/PI staining and western blot analysis of cleaved caspase-3 and cleaved poly(ADP‑ribose) polymerase (PARP) was significantly induced in a time-dependent manner upon isomahanine treatment. Isomahanine-induced caspase‑dependent apoptosis was determined using z-VAD‑fmk. The effects on autophagy in isomahanine-treated cells were investigated via conversion of LC3B and degradation of p62/SQSTM1 (p62). Isomahanine obviously induced autophagic flux as shown by an increase in punctate GFP-LC3B and the LC3B-II/LC3B-I ratio with a concomitant decrease in p62 levels. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) protected isomahanine-induced cell death, indicating the activation of autophagic cell death. Endoplasmic reticulum (ER) stress and MAPK activation were examined to elucidate the mechanism underlying cell death. The expression levels of PERK, CHOP and phosphorylated MAPK (p38, ERK1/2 and JNK1/2) were upregulated following isomahanine treatment. We found that p38 MAPK inhibitor (SB203580) significantly attenuated isomahanine-induced apoptosis and autophagic flux and this prevented cell death. Collectively, the present study demonstrated that isomahanine was able to induce ER stress and trigger p38 MAPK-mediated apoptosis and autophagic cell death in multidrug-resistant OSCC cells. The potential cytotoxic action of isomahanine may provide the development of anticancer candidates for treating multidrug-resistant cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.