Researchers have long been interested in the role that norms can play in governing agent actions in multi-agent systems. Much work has been done on formalising normative concepts from human society and adapting them for the government of open software systems, and on the simulation of normative processes in human and artificial societies. However, there has been comparatively little work on applying normative MAS mechanisms to understanding the norms in human society. This work investigates this issue in the context of international politics. Using the GDELT dataset, containing machine-encoded records of international events extracted from news reports, we extracted bilateral sequences of inter-country events and applied a Bayesian norm mining mechanism to identify norms that best explained the observed behaviour. A statistical evaluation showed that the normative model fitted the data significantly better than a probabilistic discrete event model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.