Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text classification are being explored. Perhaps the next task to catch on is emotion detection, the task of identifying emotions. This is because emotions are the finer grained information which could be extracted from opinions. So besides writer sentiments, writer emotion is also a valuable data. Emotion detection can be done using text, facial expressions, verbal communications and brain waves; however, the focus of this review is on text-based sentiment analysis and emotion detection. The internet has provided an avenue for the public to express their opinions easily. These expressions not only contain positive or negative sentiments, it contains emotions as well. These emotions can help in social behaviour analysis, decision and policy makings for companies and the country. Emotion detection can further support other tasks such as opinion mining and early depression detection. This review provides a comprehensive analysis of the shift in recent trends from text sentiment analysis to emotion detection and the challenges in these tasks. We summarize some of the recent works in the last five years and look at the methods they used. We also look at the models of emotion classes that are generally referenced. The trend of text-based emotion detection has shifted from the early keyword-based comparisons to machine learning and deep learning algorithms that provide more flexibility to the task and better performance.
A text summary extracts serves as a condensed representation of a written input source where important and salient information is kept. However, the condensed representation itself suffer in lack of semantic and coherence if the summary was produced in verbatim using the input itself. Sentence Compression is a technique where unimportant details from a sentence are eliminated by preserving the sentence’s grammar pattern. In this study, we conducted an analysis on our developed Malay Text Corpus to discover the rules and pattern on how human summarizer compresses and eliminates unimportant constituent to construct a summary. A Pattern-Growth based model named Frequent Eliminated Pattern (FASPe) is introduced to represent the text using a set of sequence adjacent words that is frequently being eliminated across the document collection. From the rules obtained, some heuristic knowledge in Sentence Compression is presented with confidence value as high as 85% - that can be used for further reference in the area of Text Summarization for Malay language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.