Coronary artery calcification is a calcium buildup within the walls of the arteries. It is considered a predominant marker for coronary artery disease. Thus many approaches have been developed for the automatic detection of calcification. The previous calcification detection was on segmentation of other structures as pre-processing steps or using the fact that the calcification often appears as a bright region. In this paper, an automated system proposed using a deep learning approach to detect the calcification absence and calcification presence in coronary artery IVUS image. A useful advantage of deep learning, compared to other methods is, it uses representations and features directly from the raw data, bypassing the need to manually extract features, a common that required in the traditional machine learning framework. The type of deep learning architecture used is 27 layers of convolutional neural networks (CNNs) using Direct Acyclic Graph. The proposed system used 2175 images and achieved an accuracy of 98.16% for Cartesian coordinate images and 99.08% for Polar Reconstructed Coordinate images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.