Background A simple, robust, precise, and an accurate HPLC method was established for simultaneous estimation of xylometazoline hydrochloride and ipratropium bromide from a nasal spray dosage form. The effective separation was obtained by injecting 10 μl of sample and standard solutions on to an Inertsil ODS column, 250 × 4.6, mm, 5 μ at 45 °C using phosphate buffer with 1-pentane sulphonic acid sodium salt at pH 4.7 as a mobile phase A and acetonitrile as the mobile phase B. The gradient was optimized with a flow rate of 1 mL/min and a wavelength of 210.0 nm. Result The complete analytical method validation was successfully carried out as per ICH guidelines. The retrieval study was carried out at 50% to 150% level of working concentration, and results were in the range of 99 to 101% for both the analytes. The linearity was proven from 4 to 150% of working concentration with linear regression curve (R2=0.999) for both the analytes. The developed method was robust for different parameters like column temperature, flow rate, mobile phase pH, composition, and gradient. Conclusion The developed HPLC method can be successfully used for the estimation of xylometazoline hydrochloride and ipratropium bromide from nasal spray dosage form as a release test in QC department of manufacturing units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.