With increasing number of COVID-19 cases globally, all the countries are ramping up the testing numbers. While the RT-PCR kits are available in sufficient quantity in several countries, others are facing challenges with limited availability of testing kits and processing centers in remote areas. This has motivated researchers to find alternate methods of testing which are reliable, easily accessible and faster. Chest X-Ray is one of the modalities that is gaining acceptance as a screening modality. Towards this direction, the paper has two primary contributions. Firstly, we present the COVID-19 Multi-Task Network (COMiT-Net) which is an automated end-to-end network for COVID-19 screening. The proposed network not only predicts whether the CXR has COVID-19 features present or not, it also performs semantic segmentation of the regions of interest to make the model explainable. Secondly, with the help of medical professionals, we manually annotate the lung regions and semantic segmentation of COVID19 symptoms in CXRs taken from the ChestXray-14, CheXpert, and a consolidated COVID-19 dataset. These annotations will be released to the research community. Experiments performed with more than 2500 frontal CXR images show that at 90% specificity, the proposed COMiT-Net yields 96.80% sensitivity.
PurposeTo advance the usage of CXRs as a viable solution for efficient COVID-19 diagnostics by providing large-scale annotations of the abnormalities in frontal CXRs in BIMCV-COVID19+ database, and to provide a robust evaluation mechanism to facilitate its usage.Materials and MethodsWe provide the abnormality annotations in frontal CXRs by creating bounding boxes. The frontal CXRs are a part of the existing BIMCV-COVID19+ database. We also define four different protocols for robust evaluation of semantic segmentation and classification algorithms. Finally, we benchmark the defined protocols and report the results using popular deep learning models as a part of this study.ResultsFor semantic segmentation, Mask-RCNN performs the best among all the models with a DICE score of 0.43 ± 0.01. For classification, we observe that MobileNetv2 yields the best results for 2-class and 3-class classification. We also observe that deep models report a lower performance for classifying other classes apart from the COVID class.ConclusionBy making the annotated data and protocols available to the scientific community, we aim to advance the usage of CXRs as a viable solution for efficient COVID-19 diagnostics. This large-scale data will be useful for ML algorithms and can be used for learning radiological patterns observed in COVID-19 patients. Further, the protocols will facilitate ML practitioners for unified large-scale evaluation of their algorithms.Data Availability StatementThe data associated with this work is available here : Radiologists’ Annotations on COVID-19+ X-rays https://osf.io/b35xu/ via @OSFramework andhttp://covbase4all.igib.res.in/.
With increasing number of COVID-19 cases globally, all the countries are ramping up the testing numbers. While the RT-PCR kits are available in sufficient quantity in several countries, others are facing challenges with limited availability of testing kits and processing centers in remote areas. This has motivated researchers to find alternate methods of testing which are reliable, easily accessible and faster. Chest X-Ray is one of the modalities that is gaining acceptance as a screening modality. Towards this direction, the paper has two primary contributions. Firstly, we present the COVID-19 Multi-Task Network which is an automated end-to-end network for COVID-19 screening. The proposed network not only predicts whether the CXR has COVID-19 features present or not, it also performs semantic segmentation of the regions of interest to make the model explainable. Secondly, with the help of medical professionals, we manually annotate the lung regions of 9000 frontal chest radiographs taken from ChestXray-14, CheXpert and a consolidated COVID-19 dataset. Further, 200 chest radiographs pertaining to COVID-19 patients are also annotated for semantic segmentation. This database will be released to the research community.
Existing facial analysis systems have been shown to yield biased results against certain demographic subgroups. Due to its impact on society, it has become imperative to ensure that these systems do not discriminate based on gender, identity, or skin tone of individuals. This has led to research in the identification and mitigation of bias in AI systems. In this paper, we encapsulate bias detection/estimation and mitigation algorithms for facial analysis. Our main contributions include a systematic review of algorithms proposed for understanding bias, along with a taxonomy and extensive overview of existing bias mitigation algorithms. We also discuss open challenges in the field of biased facial analysis.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.