Pretreatment is the requisite step for the bioconversion of lignocellulosics. Since most of the pretreatment strategies are cost/energy intensive and environmentally hazardous, there is a need for the development of an environment-friendly pretreatment process. An ionic liquid (IL) based pretreatment approach has recently emerged as the most appropriate one as it can be accomplished under ambient process conditions. However, IL-pretreated biomass needs extensive washing prior to enzymatic saccharification as the enzymes may be inhibited by the residual IL. This necessitated the exploration of IL-stable saccharification enzymes (cellulases). Current study aims at optimizing the bioprocess variables viz. carbon/nitrogen sources, medium pH and fermentation time, by using a Design of Experiments approach for achieving enhanced production of ionic liquid tolerant cellulase from a bacterial isolate Bacillus subtilis SV1. The cellulase production was increased by 1.41-fold as compared to that under unoptimized conditions. IL-stable cellulase was employed for saccharification of IL (1-ethyl-3-methylimidazolium methanesulfonate) pretreated pine needle biomass in a newly designed bioprocess named as "one pot consolidated bioprocess" (OPCB), and a saccharification efficiency of 65.9% was obtained. Consolidated bioprocesses, i.e., OPCB, offer numerous techno-economic advantages over conventional multistep processes, and may potentially pave the way for successful biorefining of biomass to biofuel, and other commercial products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.