Software fault prediction is the significant process of identifying the errors or defects or faults in a software product. But, accurate and timely detection is the major challenging issue in different existing approaches to predicting software defects. A novel Gaussian linear feature embedding-based statistical test piecewise multilayer perceptive deep learning classifier (GLFE-STPMPDLC) is introduced to improve software fault prediction accuracy and minimize time consumption. First, the input data are collected from the dataset. Next, the software metrics selection is carried out to select the significant metrics using Gaussian kernelized locally linear embedding with lesser software fault prediction. Then classification is carried out by Kaiser Meyer piecewise multilayer perceptive deep learning classifier for software fault prediction. The novelty of Kaiser–Meyer–Olkin (KMO) correlation test analyzes testing and training instances. The innovation of the Heaviside step activation function is applied for analyzing the KMO correlation test results and providing the final software fault prediction results. Finally, accurate fault prediction outcomes are achieved at the output layer with lesser error. Simulation of proposed GLFE-STPMPDLC technique achieves better 5%, 3%, 3% and 3% enhancement of fault prediction accuracy, precision, recall, and f-measure and 13% faster prediction time compared to conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.