SummaryThe abiotic stresses of drought, salinity and freezing are linked by the fact that they all decrease the availability of water to plant cells. This decreased availability of water is quantified as a decrease in water potential. Plants resist low water potential and related stresses by modifying water uptake and loss to avoid low water potential, accumulating solutes and modifying the properties of cell walls to avoid the dehydration induced by low water potential and using protective proteins and mechanisms to tolerate reduced water content by preventing or repairing cell damage. Salt stress also alters plant ion homeostasis, and under many conditions this may be the predominant factor affecting plant performance. Our emphasis is on experiments that quantify resistance to realistic and reproducible low water potential (drought), salt and freezing stresses while being suitable for genetic studies where a large number of lines must be analyzed. Detailed protocols for the use of polyethylene glycol-infused agar plates to impose low water potential stress, assay of salt tolerance based on root elongation, quantification of freezing tolerance and the use of electrolyte leakage experiments to quantify cellular damage induced by freezing and low water potential are also presented.
RNA interference, mediated by small interfering RNAs (siRNAs), is a conserved regulatory process that has evolved as an antiviral defense mechanism in plants and animals. It is not known whether host cells also use siRNAs as an antibacterial defense mechanism in eukaryotes. Here, we report the discovery of an endogenous siRNA, nat-siRNAATGB2, that is specifically induced by the bacterial pathogen Pseudomonas syringae carrying effector avrRpt2. We demonstrate that the biogenesis of this siRNA requires DCL1, HYL1, HEN1, RDR6, NRPD1A, and SGS3. Its induction also depends on the cognate host disease resistance gene RPS2 and the NDR1 gene that is required for RPS2-specified resistance. This siRNA contributes to RPS2-mediated race-specific disease resistance by repressing PPRL, a putative negative regulator of the RPS2 resistance pathway.antibacterial defense ͉ DCL1 ͉ RDR6 ͉ RPS2-specific
Summary Argonaute (AGO) proteins are critical components of RNA silencing pathways that bind small RNAs and mediate gene silencing at their target sites. We found that Arabidopsis AGO2 is highly induced by the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Further genetic analysis demonstrated that AGO2 functions in antibacterial immunity. One abundant species of AGO2-bound small RNAs is miR393b*, which targets a Golgi-localized SNARE gene MEMB12. Pst infection down-regulates MEMB12 in a miR393b*-dependent manner. Loss-of-function of MEMB12 but not SYP61, another intracellular SNARE, leads to increased exocytosis of an antimicrobial pathogenesis-related protein PR1. Overexpression of miR393b* resembles memb12 mutant in resistance responses. Thus, AGO2 functions in antibacterial immunity by binding miR393b* to modulate exocytosis of antimicrobial PR proteins via MEMB12. Since miR393 also contributes to antibacterial responses, miR393*/miR393 represent an example of a miRNA*/miRNA pair that functions in immunity through two distinct AGOs - miR393* through AGO2 while miR393 through AGO1.
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are essential regulatory molecules of many cellular processes. Arabidopsis has at least three classes of endogenous siRNAs-chromatin-associated siRNAs, trans-acting siRNAs (tasiRNAs), and natural antisense transcript (NAT)-associated siRNAs (nat-siRNAs)-all 20-25 nucleotides (nt) in length. Here, we identified a novel class of small RNAs, long siRNAs (lsiRNAs), which are 30-40 nt and share many common features with known siRNAs. The lsiRNAs identified so far are induced by pathogen infection or under specific growth conditions. One of the lsiRNAs, AtlsiRNA-1, is generated from SRRLK/AtRAP NAT pair and specifically induced by the bacterium Pseudomonas syringae carrying effector avrRpt2. Recently, 25-to 31-nt PIWI-interacting RNAs (piRNAs) and repeat-associated siRNAs (rasiRNAs) were identified in animal germline cells. In contrast to the biogenesis of piRNAs/rasiRNAs, which is dicer independent and requires PIWI subfamily proteins, generation of AtlsiRNA-1 requires DCL1, DCL4, and the ARGONAUTE subfamily protein AGO7. It also depends on HYL1, HEN1, HST1, RDR6, and Pol IV. Induction of AtlsiRNA-1 silences AtRAP, which encodes a RAP-domain protein involved in disease resistance. Our further analysis implies that AtlsiRNA-1 may destabilize target mRNA through decapping and XRN4-mediated 5-to-3 degradation.[Keywords: Long siRNAs (lsiRNAs); DCL1; AGO7; decapping; bacteria-induced] Supplemental material is available at http://www.genesdev.org. Small RNA-mediated gene silencing plays important roles in many cellular processes, including development, genome maintenance and integrity, and adaptive responses to biotic and abiotic stress in most eukaryotes. Small RNAs, usually 20-25 nucleotides (nt) in length, can be grouped into two classes on the basis of their origins: microRNAs (miRNAs) and small interfering RNAs (siRNAs). They guide heterochromatin formation, mRNA degradation, translational inhibition, and DNA elimination (Baulcombe 2004;Zamore and Haley 2005;Vazquez 2006). Rapid and phenomenal progress has been achieved in unraveling the components and mechanisms involved in the biogenesis and function of various small RNAs. In plants, small RNAs are highly diverse. In general, miRNAs in Arabidopsis are processed from singlestranded (ss) hairpin RNA precursors by an RNase IIItype enzyme Dicer-like (DCL) 1. A recent study shows that a couple of newly identified miRNAs are processed by DCL4 (Rajagopalan et al. 2006). The precursors of these miRNAs tend to have more complementarity within the foldback structure than that in most previously identified DCL1-dependent miRNAs. miRNAs are primarily associated with ARGONAUTE 1 (AGO1) to guide mRNA cleavage or translational inhibition. Endogenous siRNAs are usually processed from long doublestranded RNAs (dsRNAs). The generation of trans-acting siRNAs (tasiRNAs) is initiated by miRNAs, and requires DCL4 and RNA-dependent RNA polymerase (RDR) 6 for their biogenesis. Both miRNAs and tasiRNAs are 21-to 2...
Plant defense responses against pathogens are mediated by activation and repression of a large array of genes. Host endogenous small RNAs are essential in this gene expression reprogramming process. Here, we discuss recent findings on pathogen-regulated host microRNAs (miRNAs) and small interfering RNAs (siRNAs) and their roles in plant-microbe interaction. We further introduce small RNA pathway components, including Dicer-like proteins (DCLs), double-stranded RNA (dsRNA) binding protein, RNA-dependent RNA polymerases (RDRs), small RNA methyltransferase HEN1, and Argonaute (AGO) proteins, that contribute to plant immune responses. The strategies that pathogens have evolved to suppress host small RNA pathways are also discussed. Collectively, host small RNAs and RNA silencing machinery constitute a critical layer of defense in regulating the interaction of pathogens with plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.