Diabetic retinopathy results from altered insulin receptor signaling. Based on previous studies demonstrating an interaction between β-adrenergic receptors and insulin signaling in hyperglycemic conditions, we hypothesized that β-adrenergic receptor stimulation and insulin stimulation would act synergistically to inhibit one of the hallmarks of diabetic retinopathy, namely retinal endothelial cell apoptosis. To test this hypothesis, human retinal endothelial cells were grown in high glucose (25 mM) medium and treated with a β-1-adrenergic receptor agonist (xamoterol, 10 μM) alone, insulin alone (10 nM) or xamoterol + insulin. We then assessed changes in the levels of insulin receptor, insulin-like growth factor (IGF-1) receptor, and Akt phosphorylation, as well as cleaved caspase 3. Xamoterol alone significantly decreased insulin receptor, IGF-1 receptor and Akt phosphorylation, whereas insulin alone increased insulin receptor, IGF-1 receptor, and Akt phosphorylation. Xamoterol significantly decreased apoptosis of retinal endothelial cells. This data suggests that both β-adrenergic receptors and insulin can inhibit retinal endothelial cell apoptosis in hyperglycemic conditions, but inhibition occurs through independent pathways. These findings have implications for treatments of diabetic retinopathy.
We have investigated whether insulin-like growth factor-1 (IGF-1) receptor signaling alters rates of apoptosis in dopamine beta-hydroxylase (Dbh-/-) knockout mice. Retinal lysates from Dbh-/- and their heterozygote littermates (Dbh+/-) were used to examine the role of norepinephrine in the regulation of IGF-1 receptor signaling and apoptosis in the retina. Western blot analysis was done for protein levels of total and phosphorylated IGF-1 receptor, insulin receptor substrate-1 (IRS-1), insulin receptor substrate-2 (IRS-2), and Akt. A caspase 3 ELISA and dopamine ELISA were done on retinal lysates. To verify which regions of the retina were undergoing apoptosis, TUNEL labeling was performed. No changes in dopamine were noted between the KO and heterozygote mice. IGF-1 receptor phosphorylation was significantly decreased in Dbh-/- mice as compared to their heterozygote littermates (P<0.05 vs. heterozygous mice). IRS-1 protein phosphorylation was significantly decreased in KO mice (P<0.05 vs. heterozygous mice), while no significant changes were noted in IRS-2 protein phosphorylation. Akt protein phosphorylation was also reduced in the KO mice, likely leading to increased cleaved caspase 3 levels. The increase in apoptosis in the Dbh-/- mice occurred predominantly in the inner retina. Our results suggest that IGF-1 receptor signaling is reduced in the retina of mice with dysfunctional adrenergic receptor signaling. The data also indicate that IGF-1 receptor signaling occurs primarily through IRS-1, rather than IRS-2. The reduction in Akt phosphorylation, likely through reduced IGF-1 receptor signaling, could explain the increase in cleaved caspase 3, leading to apoptosis. These results suggest that alterations in adrenergic receptor signaling modulate IGF-1 receptor signaling, which can regulate apoptosis in the retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.