This paper addresses the issue of offline and online computational cost reduction of the proper orthogonal decomposition (POD) which is a popular nonlinear model order reduction (MOR) technique. Online computational cost is reduced by using the discrete empirical interpolation method (DEIM), which reduces the complexity of evaluating the nonlinear term of the reduced model to a cost proportional to the number of reduced variables obtained by POD: this is the POD-DEIM approach. Offline computational cost is reduced by generating an approximate snapshot-ensemble of the nonlinear dynamical system, consequently, completely avoiding the need to simulate the full-order system. Two snapshot ensembles: one of the states and the other of the nonlinear function are obtained by simulating the successive linearization of the original nonlinear system. The proposed technique is applied to two benchmark large-scale nonlinear dynamical systems and clearly demonstrates comprehensive savings in computational cost and time with insignificant or no deterioration in performance.
SINGH, S. 1984, High-Frequency Shallow Seismic Reflection Mapping in Tin Mining, Geophysical Prospecting 32,1033-1044.Field results of shallow seismic reflections obtained with a propane-oxygen detonator (POD) are presented. The survey site was in a tin-mining area of the Kinta Valley in Malaysia. The shallow and irregular limestone bedrock is overlain by alluvial "tailing" and virgin sediments. Sizes of such mining areas can range from about 320 x 320 m2 to 900 x 900 m2. The survey was intended to delineate the topography of the bedrock, which is of vital importance in tin ore exploration and exploitation. The equipment included single-and 12-channel signal enhancement seismographs, the POD, a hammer and thumper. The inexpensive and portable POD generates directional waves of reproducible form, variable energy of high frequency, and only a few surface waves at short offsets. Reflections at around 200 Hz were obtained from the shallow bedrock at about 25 m as well as from very shallow lithological interfaces. The interpretation of seismograms is supported by drill-hole lithological sections and synthetic seismograms. The data illustrate the successful use of shallow reflections for mapping irregular bedrock. Reflection seismics can provide better horizontal and vertical details than the refraction method. Further improvements based on the data-processing flexibility of new signai enhancement seismographs and synthetic seismograms are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.