This chapter highlights recent developments and provides an overview of the rapid application of fused deposition modelling (FDM) for polymeric smart and composites. The review is divided into sections that describe the processing conditions and characteristics of FDM components made of polymer and its composites as well as shape memory polymers/composites. The chapter covers a wide range of applications, including PVDF structures and components. While FDM adoption has been rapid in this field, more coordinated efforts in the areas of smart polymer feedstock synthesis, process tuning, and testing are required. This chapter provides an overview of 3D printed smart polymer materials and composites as well as their properties, performance, and potential applications. Additionally, this chapter discusses the motivation for future 3D printing research.
In this paper, we look at how different nickel concentrations (4, 8, and 12 percent) affect the microstructure, microhardness, and dry sliding wear behaviour of a Cu-Zn-xNi alloy. The alloy was created using a casting technique at 1100°C and a heat treatment method that included solution treatment at 600°C and ageing at 450°C for four hours each. Microstructure studies were performed on the developed alloys using a scanning electron microscope (SEM). To investigate alloy indentation resistance, an ASTM E384 microhardness test was performed. Tribological properties such as friction and wear were investigated using a pin on disc tribometer and a dry sliding wear test according to the ASTM G99 standard. SEM studies revealed α-phase (copper) and solid solution of zinc in cast alloys, while aged alloys revealed a similar structure but with the addition of Cu2NiZn precipitates. The microhardness values improved as the Ni content and ageing increased. The decrease in secondary dendrite arm spacing with increasing Ni content and ageing was attributed to the improvement. The coefficient of friction decreased as the load increased, but increased as the sliding velocity increased. However, as loads and sliding velocities increased, so did the wear rate. For the majority of loads and sliding velocities, the worn surface demonstrated abrasion as the dominant wear mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.