Face recognition is an interesting and a challenging problem that has been widely studied in the field of pattern recognition and computer vision. It has many applications such as biometric authentication, video surveillance, and others. In the past decade, several methods for face recognition were proposed. However, these methods suffer from pose and illumination variations. In order to address these problems, this paper proposes a novel methodology to recognize the face images. Since image gradients are invariant to illumination and pose variations, the proposed approach uses gradient orientation to handle these effects. The Schur decomposition is used for matrix decomposition and then Schurvalues and Schurvectors are extracted for subspace projection. We call this subspace projection of face features as Schurfaces, which is numerically stable and have the ability of handling defective matrices. The Hausdorff distance is used with the nearest neighbor classifier to measure the similarity between different faces. Experiments are conducted with Yale face database and ORL face database. The results show that the proposed approach is highly discriminant and achieves a promising accuracy for face recognition than the state-of-the-art approaches.
In the past, several automatic video summarization systems had been proposed to generate video summary. However, a generic video summary that is generated based only on audio, visual and textual saliencies will not satisfy every user. This paper proposes a novel system for generating semantically meaningful personalized video summaries, which are tailored to the individual user's preferences over video semantics. Each video shot is represented using a semantic multinomial which is a vector of posterior semantic concept probabilities. The proposed system stitches video summary based on summary time span and top-ranked shots that are semantically relevant to the user's preferences. The proposed summarization system is evaluated using both quantitative and subjective evaluation metrics. The experimental results on the performance of the proposed video summarization system are encouraging.
Face recognition in deity images is a challenging problem. Most of the existing face recognition methods are very sensitive to pose and illumination changes. This paper proposes a new technique for deity face recognition which is suitable for pose and illumination changes. The proposed approach uses Schur decomposition to speedup PCA computations and doubly modified Hausdorff distance for measuring similarity between different face edge maps. In addition, this paper introduces a new dataset named as Indian DEity dataSet (IDES) for face recognition which contains a collection of face images of Indian deities. Performances of the proposed method for deity face recognition are experimented with IDES dataset. The results show that the proposed method provides promising face recognition accuracy with pose and illumination changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.