Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R s ) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R s (R s max ), R s at a reference soil temperature (10°C; R s 10 ) and annual R s (estimated for 13 sites) ranged from 1.9 to 15.9 μmol CO 2 m −2 s −1 , 0.3 to 5.5 μmol CO 2 m −2 s −1 and 58 to 1988 g C m −2 y −1 , respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites R s max was closely related to R s 10 .Assimilate supply affected R s at timescales from daily (but not necessarily diurnal) to annual.Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R s . Temperature-independent seasonal fluctuations of R s of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites R s 10 increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R s was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R s across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO 2 emissions at various timescales.
Simulation models can be valuable to investigate potential effects of climate change on greenhouse gas emissions from terrestrial ecosystems. DNDC (the DeNitrification- Change (IPCC) A1B emission scenario. The aims of this study were to use measured soil respiration rates to validate the DNDC model for estimating CO 2 efflux from these key Irish soils, investigate the effects of future climate change on CO 2 efflux and estimate the efflux uncertainties due to using different future climate projections.The results indicate that the DNDC model can reliably estimate soil respiration from the two fields examined. The model underestimated annual measured CO 2 efflux from the pasture by only13% (model efficiency: ME = 0.6; root mean square error: RMSE =1.9 and mean absolute error: MAE = 6.3) and that from the arable conventional and
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT3 reduced tillage by 9% (ME = 0.6; RMSE = 1.6 and MAE = 2.4) and 8% (ME = 0.23; RMSE = 1.8 and MAE = 2.9), respectively. Short-term land use change had no significant effects on CO 2 effluxes from soil. Using the high temperature sensitive scenario, future C effluxes would increase by 15% for the pasture and 14 and 16% for the arable conventional and reduced tillage systems, respectively. However, under the low temperature sensitive scenario, lower increases in the C efflux of 6% for the pasture and 5% for the arable field were predicted. The calculated annual CO 2 efflux uncertainties for using the high and low temperature sensitivity scenarios were 9% for the pasture and 8% for the arable field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.