Objective: The detailed epidemiological and molecular characterization of an outbreak of Burkholderia cepacia at a neurotrauma intensive care unit of a level 1 trauma centre is described. The stringent infection control interventions taken to successfully curb this outbreak are emphasized. Methods: The clinical and microbiological data for those patients who had more than one blood culture that grew B. cepacia were reviewed. Bacterial identification and antimicrobial susceptibility testing was done using automated Vitek 2 systems. Prospective surveillance, environmental sampling, and multilocus sequence typing (MLST) were performed for extensive source tracking. Intensive infection control measures were taken to further control the hospital spread. Results: Out of a total 48 patients with B. cepacia bacteraemia, 15 (31%) had central line-associated blood stream infections. Two hundred and thirty-one environmental samples were collected and screened, and only two water samples grew B. cepacia with similar phenotypic characteristics. The clinical strains characterized by MLST typing were clonal. However, isolates from the water represented a novel strain type (ST-1289). Intensive terminal cleaning, disinfection of the water supply, and the augmentation of infection control activities were done to curb the outbreak. A subsequent reduction in bacteraemia cases was observed. Conclusion: Early diagnosis and appropriate therapy, along with the rigorous implementation of essential hospital infection control practices is required for successful containment of this pathogen and to curb such an outbreak.
ObjectivesBurkholderia pseudomallei, the causative agent for melioidosis, has become a public health problem in India and across the world. Melioidosis can be difficult to diagnose because of the inconsistent clinical presentations of the disease. This study aims to determine the genetic diversity among the clinical isolates of B. pseudomaelli from India in order to establish a molecular epidemiology and elucidate the Southeast Asian association.MethodsMolecular typing using multi locus sequence typing was performed on thirty one archived B. pseudomallei clinical isolates, previously characterised from specimens obtained from patients admitted to the Christian Medical College & Hospital, Vellore from 2015 to 2016. Further investigations into the genetic heterogeneity and evolution at a regional and global level were performed using insilico tools.ResultsMulti locus sequence typing (MLST) of the isolates from systemic and localized forms of melioidosis, including blood, pus, tissue, and urine specimens, revealed twenty isolates with novel sequence types and eleven with previously reported sequence types. High genetic diversity was observed using MLST with a strong association within the Southeast Asian region.ConclusionsMolecular typing of B. pseudomallei clinical isolates using MLST revealed high genetic diversity and provided a baseline molecular epidemiology of the disease in India with a strong Southeast Asian association of the strains. Future studies should focus on whole genome based Single-Nucleotide-Polymorphism (SNP) which has the advantage of a high discriminatory power, to further understand the novel sequence types reported in this study.
Over the last three decades, successful implementation of the diphtheria vaccination in the developed and developing countries has reduced the infections caused by the toxigenic strains of Corynebacterium diphtheriae, but a concomitant increase in the invasive infections due to the nontoxigenic strains was seen. In addition, the recent reports on the emergence of nontoxigenic toxin gene-bearing strains, having the potential to revert back to toxigenic form poses a significant threat to human beings. Besides infections caused by C. diphtheriae, the emergence of the respiratory, cutaneous and invasive infections by related pathogenic Corynebacterium species like C. ulcerans and C. pseudotuberculosis, complicate the diagnosis and management of infection. These observations together with the widespread prevalence of diphtheria in the vaccine era, necessitates the strengthening of the epidemiological surveillance and laboratory diagnosis of the pathogen. This review provides the overview of the advantages and limitations of different molecular methods and the role of MALDI-TOF in the laboratory diagnosis of Diphtheria. The contribution of next generation sequencing technology and different genotyping techniques in understanding the pathogenicity, transmission dynamics and epidemiology of the C. diphtheriae is discussed.
We report here the draft genome sequences of 11 heteroresistant vancomycin-intermediate Staphylococcus aureus (hVISA) strains from bloodstream infection. All strains harbor mutations in vraSR, graSR, walKR, and/or tcaRAB and are often implicated as the frequently mutated candidate genes in hVISA phenotypes.
We report here the draft genome sequences of five Corynebacterium diphtheriae isolates of Indian origin. The C. diphtheriae isolates TH1141, TH510, TH1526, TH1337, and TH2031 belong to sequence type ST-50, ST-295, ST-377, ST-405, and ST-405, with an average genome size of 2.5 Mbp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.