Type 2 diabetes (adult onset diabetes) is the most common type of diabetes, accounting for around 90% of all diabetes cases with insulin resistance and insulin secretion defect. The key goal of anti-diabetic therapy is to increase the development of insulin, immunity and/or decrease the amount of blood glucose. While many synthetic compounds have been produced as anti-diabetic agents, due to their side effects and limited effectiveness, their usefulness has been hindered. This systematic review investigated the bioactive compounds reported to possess activities against type 2 diabetes. Three (3) databases, PubMed, ScienceDirect, and Google Scholar, were searched for research articles published between January 2010 and October 2020. A total of 6464 articles were identified, out of which 84 articles were identified to be eligible for the study. From the data extracted, it was found that quercetin, Kaempferol, Rosmarinic acid, Cyanidin, Rutin, Catechin, Luteolin, and Ellagic acid were the most cited bioactive compounds, which all falls within the class of polyphenolic compounds. The major sources of these bioactive compounds include citrus fruits, grapes, onions, berries, cherries, broccoli, honey, apples, green tea, Ginkgo biloba, St. John's wort, green beans, cucumber, spinach, tea, Rosmarinus officinalis, Aloe vera, Moringa oleifera, tomatoes, potatoes, oregano, lemon balm, thyme, peppermint, Ocimum basilicum, red cabbage, peas, olive oil, and walnut. In conclusion, the data collected in our study indicates that consumption of polyphenolic/flavonoids rich food and vegetables as a routine diet could considerably reduce the risk of T2DM and also benefits insulin sensitivity and other chronic inflammations.
BackgroundIdentifying patients with BRCA mutations is clinically important to inform on the potential response to treatment and for risk management of patients and their relatives. However, traditional referral routes may not meet clinical needs, and therefore, mainstreaming cancer genetics has been shown to be effective in some high-income and high health-literacy settings. To date, no study has reported on the feasibility of mainstreaming in low-income and middle-income settings, where the service considerations and health literacy could detrimentally affect the feasibility of mainstreaming.MethodsThe Mainstreaming Genetic Counselling for Ovarian Cancer Patients (MaGiC) study is a prospective, two-arm observational study comparing oncologist-led and genetics-led counselling. This study included 790 multiethnic patients with ovarian cancer from 23 sites in Malaysia. We compared the impact of different method of delivery of genetic counselling on the uptake of genetic testing and assessed the feasibility, knowledge and satisfaction of patients with ovarian cancer.ResultsOncologists were satisfied with the mainstreaming experience, with 95% indicating a desire to incorporate testing into their clinical practice. The uptake of genetic testing was similar in the mainstreaming and genetics arm (80% and 79%, respectively). Patient satisfaction was high, whereas decision conflict and psychological impact were low in both arms of the study. Notably, decisional conflict, although lower than threshold, was higher for the mainstreaming group compared with the genetics arm. Overall, 13.5% of patients had a pathogenic variant in BRCA1 or BRCA2, and there was no difference between psychosocial measures for carriers in both arms.ConclusionThe MaGiC study demonstrates that mainstreaming cancer genetics is feasible in low-resource and middle-resource Asian setting and increased coverage for genetic testing.
The unavailability of vaccine and medicines raised serious issues during COVID-19 pandemic and peoples from different parts of world relied on traditional medicine for their immediate recovery from COVID-19 and it found effective also. The current research aims to target COVID-19 immunological human host receptors i.e. angiotensin-converting enzyme (ACE)-2, interleukin (IL)-1b, IL-6, tumor necrosis factor-alpha (TNF-a) and protease-activated receptor (PAR)-1 using curcumin derivatives to prevent viral infection and control overproduction of early clinical responses of COVID-19. Targeting these host proteins will mitigate the infection and will filter out many complications caused by these proteins in COVID-19 patients. It is proven through computer-aided computational modeling approaches, total 30 compounds of curcumin and its derivatives were chosen. Drug-likeness parameters were calculated for curcumin and its derivatives and 20 curcumin analogs were selected for docking analysis. From docking analysis of 20 curcumin analogs against five chosen human host receptor targets reveals 11 curcumin analogs possess least binding affinity and best interaction at active sites subjected to absorption, distribution, metabolism, excretion (ADME) analysis. Density functional theory (DFT) analysis of five final shortlisted curcumin derivatives was done to show least binding affinity toward chosen host target protein. Molecular dynamics simulation (MDS) was performed to observe behavior and interaction of potential drug hydrazinocurcumin against target proteins ACE-2 and PAR-1. It was performed at 100 nanoseconds and showed satisfactory results. Finally, our investigation reveals that hydrazinocurcumin possesses immunomodulatory and anti-cytokine therapeutic potential against COVID-19 and it can act as COVID-19 warrior drug molecule and promising choice of drug for COVID-19 treatment, however, it needs further in vivo clinical evaluation to commercialize as COVID-19 drug.
The prime aim of this study was to enumerate predominant bacteria from polluted lake soil samples, which possess polyhydroxybutyrate (PHB) fabricating potential and identify the suitable growth conditions and nutritional factors for PHB fabrication. From several numbers of bacterial cultures, one culture has the competence to yield PHB, and it was endorsed through Sudan Black B stain, Nile red staining, SEM analysis, and growth in PHB selective media. Under the microscopic observation, the fluorescent cells and polymeric granules were observed in the fluorescent microscope and SEM, respectively. This PHB fabricating isolate was recognized as Bacillus cereus NDRMN001 through 16S rRNA partial sequence analysis. The structural characteristics of PHB produced by B. cereus NDRMN001 were studied through FT-IR, 1 H NMR, and 13 C NMR analysis. The peak observed at 1759.27 cm À1 on FT-IR analysis is corresponding to the signal band of PHB. In 1 H NMR peaks were noticed at 1.67, 2.37 to 2.71, and 3.38 to 7.68 which corresponding to -CH3, -CH2, and -CH protons of PHB. About 4 notable peaks were noticed in 13 C NMR analysis at 19.62, 68.27, 40.68, and 169.11 ppm which appeared close to the carboxyl group of PHB. About 10% of inoculum, pH 7.5, 2 g L of yeast extract, 20 g L of rice bran, 35 C, and 2 days of incubation were recognized as optimal growth conditions for B. cereus NDRMN001 to produce PHB. The identified B. cereus NDRMN001 has the potential to yield 91.48% of PHB as 33.19 g L of PHB from 36.26 g L of culture biomass. The complete results conclude that the B. cereus NDRMN001 screened from polluted lake soil has the competence to produce fine quality and quantity of PHB in a short duration of fabrication process under favorable conditions with the utilization of cheap nutritional factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.