Food is essential to life, hence food safety is a basic human right. Billons of people in the world are at risk of unsafe food. Many millions become sick while hundreds of thousand die yearly. The food chain starts from farm to fork/plate while challenges include microbial, chemical, personal and environmental hygiene. Historically, documented human tragedies and economic disasters due to consuming contaminated food occurred as a result of intentional or unintentional personal conduct and governmental failure to safeguard food quality and safety. While earlier incidents were mainly chemical contaminants, more recent outbreaks have been due to microbial agents. The Disability Adjusted Life Years (DALYs) attributed to these agents are most devastating to children younger than 5 years of age, the elderly and the sick. To ensure food safety and to prevent unnecessary foodborne illnesses, rapid and accurate detection of pathogenic agents is essential. Culture-based tests are being substituted by faster and sensitive culture independent diagnostics including antigen-based assays and polymerase chain reaction (PCR) panels. Innovative technology such as Nuclear Magnetic Resonance (NMR) coupled with nanoparticles can detect multiple target microbial pathogens' DNA or proteins using nucleic acids, antibodies and other biomarkers assays analysis. The food producers, distributors, handlers and vendors bear primary responsibility while consumers must remain vigilant and literate. Government agencies must enforce food safety laws to safeguard public and individual health. Medical providers must remain passionate to prevent foodborne illnesses and may consider treating diseases with safe diet therapy under proper medical supervision. The intimate collaboration between all the stakeholders will ultimately ensure food safety in the 21st century.
Penicillium menonorum is described as a new monoverticillate, non-vesiculate species that resembles P. restrictum and P. pimiteouiense. On the basis of phylogenetic analysis of DNA sequences from four loci, P. menonorum occurs in a clade with P. pimiteouiense, P. vinaceum, P. guttulosum, P. rubidurum, and P. parvum. Genealogical concordance analysis was applied to P. pimiteouiense and P. parvum, substantiating the phenotypically defined species. The species P. rubidurum, P. guttulosum, and P. menonorum were on distinct branches statistically excluded from inclusion in other species and have distinct phenotypes.
Background Vibrio parahaemolyticus is a Gram-negative bacterium widely distributed in marine environments and a well-recognized invertebrate pathogen frequently isolated from seafood. V. parahaemolyticus may also spread into humans, via contaminated, raw, or undercooked seafood, causing gastroenteritis and diarrhea. Methods A Nuclear Magnetic Resonance (NMR)-based detection system was used to detect pathogenic levels of this microorganism (10 5 CFU/ml) with Molecular Mirroring using iron nanoparticles coated with target-specific biomarkers capable of binding to DNA of the target microorganism. The NMR system generates a signal (in milliseconds) by measuring NMR spin–spin relaxation time T 2 , which correlates with the amount of microorganism DNA. Results Compared with conventional microbiology techniques such as real-time PCR (qPCR), the NMR biosensor showed similar limits of detection (LOD) at different concentrations (10 5 –10 8 CFU/ml) using two DNA extraction methods. In addition, the NMR biosensor system can detect a wide range of microorganism DNAs in different matrices within a short period of time. Conclusion NMR biosensor represents a potential tool for diagnostic and quality control to ensure microbial pathogens such as V. parahaemolyticus are not the cause of infection. The “hybrid” technology (NMR and nanoparticle application) opens a new platform for detecting other microbial pathogens that have impacted human health, animal health and food safety.
CelTherm is a biochemical process to produce renewable fuels and chemicals from lignocellulosic biomass. The present study's objective was to determine the level of treatment/purity of the microbial triacylglyceride oil (TAG) necessary to facilitate fuel production. After a unique microbe aerobically synthesizes TAG from biomass-derived sugars, the microbes were harvested and dried then crude TAG was chemically extracted from the residual biomass. Some TAGs were further purified to hydrotreating process requirements. Both grades were then noncatalytically cracked into a petroleum-like intermediate characterized by gas chromatography. Experiments were repeated using refined soybean oil for comparison to previous studies. The products from crude microbial TAG cracking were then further refined into a jet fuel product. Fuel tests indicate that this jet fuel corresponds to specifications for JP-8 military turbine fuel. It was thus concluded that the crude microbial TAG is a suitable feedstock with no further purification required, demonstrating CelTherm's commercial potential.
We evaluated the performance of an early prototype core molecular mirroring nuclear magnetic resonance detection platform (Mentor-100) to detect toxigenic Clostridium difficile from stool. This technology uses customized nanoparticles bound to target specific oligonucleotide probes that form binaries in the presence of nucleic acid from the target microorganism. Liquid patient stool specimens were seeded with C. difficile or other Clostridium species to determine the analytical sensitivity and specificity. Samples underwent nucleic acid extraction and target amplification with probes conjugated with iron nanoparticles. Signal from nuclear magnetic resonance spin-spin relaxation time was measured to detect the presence or absence of toxigenic C. difficile. The limit of detection was <180 colony forming units per reaction of toxigenic C. difficile. No cross-reactivity was observed with nontoxigenic C. difficile, Clostridium sordellii, Clostridium perfringens, Bacillus subtilis, or Paenibacillus polymyxa at 10 colony forming units/mL. Correlation studies using frozen stool samples yielded a sensitivity of 88.4% (61 of 69) and a specificity of 87.0% (40 of 46) as compared with a commercial PCR assay for C. difficile. The area under the curve in the receiver operating characteristic curve analysis was 0.922. The prototype molecular mirroring platform showed promising performance for pathogen detection from clinical specimens. The platform design has the potential to offer a novel, low-cost alternative to currently available nucleic acid-based tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.