Background The COVID-19 pandemic is a significant public health crisis that is hitting hard on people's health, well-being, and freedom of movement, and affecting the global economy. Scientists worldwide are competing to develop therapeutics and vaccines; currently, three drugs and two vaccine candidates have been given emergency authorization use. However, there are still questions of efficacy with regard to specific subgroups of patients and the vaccine's scalability to the general public. Under such circumstances, understanding COVID-19 symptoms is vital in initial triage; it is crucial to distinguish the severity of cases for effective management and treatment. This study aimed to discover symptom patterns and overall symptom rules, including rules disaggregated by age, sex, chronic condition, and mortality status, among COVID-19 patients. Methods This study was a retrospective analysis of COVID-19 patient data made available online by the Wolfram Data Repository through May 27, 2020. We applied a widely used rule-based machine learning technique called association rule mining to identify frequent symptoms and define patterns in the rules discovered. Result In total, 1,560 patients with COVID-19 were included in the study, with a median age of 52 years. The most frequently occurring symptom was fever (67%), followed by cough (37%), malaise/body soreness (11%), pneumonia (11%), and sore throat (8%). Myocardial infarction, heart failure, and renal disease were present in less than 1% of patients. The top ten significant symptom rules (out of 71 generated) showed cough, septic shock, and respiratory distress syndrome as frequent consequents. If a patient had a breathing problem and sputum production, then, there was higher confidence of that patient having a cough; if cardiac disease, renal disease, or pneumonia was present, then there was a higher confidence of septic shock or respiratory distress syndrome. Symptom rules differed between younger and older patients and between male and female patients. Patients who had chronic conditions or died of COVID-19 had more severe symptom rules than those patients who did not have chronic conditions or survived of COVID-19. Concerning chronic condition rules among 147 patients, if a patient had diabetes, prerenal azotemia, and coronary bypass surgery, there was a certainty of hypertension. Conclusion The most frequently reported symptoms in patients with COVID-19 were fever, cough, pneumonia, and sore throat; while 1% had severe symptoms, such as septic shock, respiratory distress syndrome, and respiratory failure. Symptom rules differed by age and sex. Patients with chronic disease and patients who died of COVID-19 had severe symptom rules more specifically, cardiovascular-related symptoms accompanied by pneumonia, fever, and cough as consequents.
Protein succinylation is an important post-translational modification (PTM) responsible for many vital metabolic activities in cells, including cellular respiration, regulation, and repair. Here, we present a novel approach that combines features from supervised word embedding with embedding from a protein language model called ProtT5-XL-UniRef50 (hereafter termed, ProtT5) in a deep learning framework to predict protein succinylation sites. To our knowledge, this is one of the first attempts to employ embedding from a pre-trained protein language model to predict protein succinylation sites. The proposed model, dubbed LMSuccSite, achieves state-of-the-art results compared to existing methods, with performance scores of 0.36, 0.79, 0.79 for MCC, sensitivity, and specificity, respectively. LMSuccSite is likely to serve as a valuable resource for exploration of succinylation and its role in cellular physiology and disease.
Abstract-It is widely accepted that food supply and quality are major problems in the 21st century. Due to the growth of the world's population, there is a pressing need to improve the productivity of agricultural crops, which hinges on different factors such as geographical location, soil type, weather condition and particular attributes of the crops to plant. In many regions of the world, information about those factors is not readily accessible and dispersed across a multitude of different sources. One of those regions is Nepal, in which the lack of access to this knowledge poses a significant burden for agricultural planning and decision making. Making such knowledge more accessible can boot up a farmer's living standard and increase their competitiveness on national and global markets. In this article, we show how we converted several available, although not easily accessible, datasets to RDF, thereby lowering the barrier for data re-usage and integration. We describe the conversion, linking, and publication process as well as use cases, which can be implemented using the farming datasets in Nepal.
Phosphorylation is one of the most important post-translational modifications and plays a pivotal role in various cellular processes. Although there exist several computational tools to predict phosphorylation sites, existing tools have not yet harnessed the knowledge distilled by pretrained protein language models. Herein, we present a novel deep learning-based approach called LMPhosSite for the general phosphorylation site prediction that integrates embeddings from the local window sequence and the contextualized embedding obtained using global (overall) protein sequence from a pretrained protein language model to improve the prediction performance. Thus, the LMPhosSite consists of two base-models: one for capturing effective local representation and the other for capturing global per-residue contextualized embedding from a pretrained protein language model. The output of these base-models is integrated using a score-level fusion approach. LMPhosSite achieves a precision, recall, Matthew's correlation coefficient, and F1-score of 38.78%, 67.12%, 0.390, and 49.15%, for the combined serine and threonine independent test data set and 34.90%, 62.03%, 0.298, and 44.67%, respectively, for the tyrosine independent test data set, which is better than the compared approaches. These results demonstrate that LMPhosSite is a robust computational tool for the prediction of the general phosphorylation sites in proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.