Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finiteelement results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectan-gular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE500 8camera motion analysis system.
Presented here is a camera-based noncontact measurement theory for static/dynamic testing of flexible multibody systems that undergo large rigid, elastic and/or plastic deformations. The procedure and equations for accurate estimation of system parameters (i.e. the location and focal length of each camera and the transformation matrix relating its image and object coordinate systems) using an L-frame with four retroreflective markers are described in detail. Moreover, a method for refinement of estimated system parameters and establishment of a lens distortion model for correcting optical distortions using a T-wand with three markers is described. Dynamically deformed geometries of a multibody system are assumed to be obtained by tracing the three-dimensional instantaneous coordinates of markers adhered to the system's outside surfaces, and cameras and triangulation techniques are used for capturing marker images and identifying markers' coordinates. Furthermore, an EAGLE-500 motion analysis system is used to demonstrate measurements of static/dynamic deformations of six different flexible multibody systems. All numerical simulations and experimental results show that the use of camera-based motion analysis systems is feasible and accurate enough for static/dynamic experiments on flexible multibody systems, especially those that cannot be measured using conventional contact sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.