These nomograms would help clinicians evaluate flow rates over a wide-range of voided volume as well as age, enabling effective screening of women for voiding dysfunction, and evaluating response to medical or surgical treatment.
In this study, an attempt has been made to identify expression-based gene biomarkers that can discriminate early and late stage of clear cell renal cell carcinoma (ccRCC) patients. We have analyzed the gene expression of 523 samples to identify genes that are differentially expressed in the early and late stage of ccRCC. First, a threshold-based method has been developed, which attained a maximum accuracy of 71.12% with ROC 0.67 using single gene NR3C2. To improve the performance of threshold-based method, we combined two or more genes and achieved maximum accuracy of 70.19% with ROC of 0.74 using eight genes on the validation dataset. These eight genes include four underexpressed (NR3C2, ENAM, DNASE1L3, FRMPD2) and four overexpressed (PLEKHA9, MAP6D1, SMPD4, C11orf73) genes in the late stage of ccRCC. Second, models were developed using state-of-art techniques and achieved maximum accuracy of 72.64% and 0.81 ROC using 64 genes on validation dataset. Similar accuracy was obtained on 38 genes selected from subset of genes, involved in cancer hallmark biological processes. Our analysis further implied a need to develop gender-specific models for stage classification. A web server, CancerCSP, has been developed to predict stage of ccRCC using gene expression data derived from RNAseq experiments.
BackgroundAge-related macular degeneration (AMD) is the leading cause of blindness in the elderly population. We have shown previously that mice deficient in monocyte chemoattractant protein-1 (MCP1/CCL2) or its receptor (CCR2) develop the features of AMD in senescent mice, however, the human genetic evidence so far is contradictory. We hypothesized that any dysfunction in the CCL2 and its receptor result could be the contributing factor in pathogenesis of AMD.Methods and Findings133 AMD patients and 80 healthy controls were enrolled for this study. Single neucleotid Polymorphism for CCL2 and CCR2 was analyzed by real time PCR. CCL2 levels were determined by enzyme-linked immunosorbent assay (ELISA) after normalization to total serum protein and percentage (%) of CCR2 expressing peripheral blood mononuclear cells (PBMCs) was evaluated using Flow Cytometry. The genotype and allele frequency for both CCL2 and CCR2 was found to be significantly different between AMD and normal controls. The CCL2 ELISA levels were significantly higher in AMD patients and flow Cytometry analysis revealed significantly reduced CCR2 expressing PBMCs in AMD patients as compared to normal controls.ConclusionsWe analyzed the association between single neucleotide polymorphisms (SNPs) of CCL2 (rs4586) and CCR2 (rs1799865) with their respective protein levels. Our results revealed that individuals possessing both SNPs are at a higher risk of development of AMD.
The purpose of the study was to determine serum complement factor H (CFH) levels in patients of age related macular degeneration (AMD) and examine its association with CFH Y402H polymorphism. 115 AMD patients and 61 normal controls were recruited in this study. The single nucleotide polymorphism was assayed by real time PCR and serum CFH levels were measured by ELISA and standardized to total serum protein. Chi-square test was applied to polymorphism analysis while Mann Whitney U-statistic for CFH-levels. Mendelian randomization approach was used for determining causal relationship. The genotype frequency differed between the AMD patients (TT- 18.3%, TC-41.3% and CC-40.4%) and controls (TT-76.3%, TC-13.6%, and CC-10.1%) (p = 0001). The frequency of alleles was also significantly different when AMD (T-39% and C-61%) was compared to controls (T-83% and C-17%) (p = 0.0001). Level of serum CFH was significantly lower in AMD patients as compared to normal controls (p = 0.001). Our data showed that the CFH Y402H polymorphism is a risk factor for AMD in the North Indian population. Mendelian randomization approach revealed that CFH Y402H polymorphism affects AMD risk through the modification of CFH serum levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.