Intelligent vehicle technology has made tremendous progress due to Artificial Intelligence (AI) techniques.Accurate behavior prediction of surrounding traffic actors is essential for the safe and secure navigation of the intelligent vehicle. Minor misbehavior of these vehicles on the busy roads may lead to an accident. Due to this, there is a need for vehicle behavior research work in today's era. This research article reviews traffic actors' behavior prediction techniques for intelligent vehicles to perceive, infer, and anticipate other vehicles' intentions and future actions. It identifies the key strategies and methods for AI, emerging trends, datasets, and ongoing research issues in these fields. As per the authors' knowledge, this is the first systematic literature review dedicated to the vehicle behavior study examining existing academic literature published by peer review venues between 2011 and 2021. A systematic review was undertaken to examine these papers, and five primary research questions have been addressed. The findings show that using sophisticated input representation that includes traffic rules and road geometry, artificial intelligence-based solutions applied to behavior prediction of traffic actors for intelligent vehicles have shown promising success, particularly in complex driving scenarios. Finally, the paper summarizes the most widely used approaches in behavior prediction of traffic actors for intelligent vehicles, which the authors believe serves as a foundation for future research in behavior prediction of surrounding traffic actors for secure and accurate intelligent vehicle navigation. INDEX TERMS intelligent driving; deep learning; intelligent vehicles; vehicle behavior prediction; pedestrian behavior prediction. Inclusion criteriaResearch articles must be original research articles instead of review/survey articles. Research articles that are published between2011 and 2021.Research articles that answer at least one research question. Research articles must contain search keywords either in the title, abstract, or full text. The proposed solution in the research article must be evaluated. The solution developed must be aimed to solve problems on behavior prediction of traffic actors. Exclusion criteriaNon-English Research articles Duplicate research articles Research articles with non-availability of full text Research articles that are not relevant to pedestrians and vehicle behavior prediction concerning intelligent vehicle III. RESULTSThis section summarizes the findings of systematic analysis. It answers the research questions posed above based on the results of this review process.
The intelligent transportation system, especially autonomous vehicles, has seen a lot of interest among researchers owing to the tremendous work in modern artificial intelligence (AI) techniques, especially deep neural learning. As a result of increased road accidents over the last few decades, significant industries are moving to design and develop autonomous vehicles. Understanding the surrounding environment is essential for understanding the behavior of nearby vehicles to enable the safe navigation of autonomous vehicles in crowded traffic environments. Several datasets are available for autonomous vehicles focusing only on structured driving environments. To develop an intelligent vehicle that drives in real-world traffic environments, which are unstructured by nature, there should be an availability of a dataset for an autonomous vehicle that focuses on unstructured traffic environments. Indian Driving Lite dataset (IDD-Lite), focused on an unstructured driving environment, was released as an online competition in NCPPRIPG 2019. This study proposed an explainable inception-based U-Net model with Grad-CAM visualization for semantic segmentation that combines an inception-based module as an encoder for automatic extraction of features and passes to a decoder for the reconstruction of the segmentation feature map. The black-box nature of deep neural networks failed to build trust within consumers. Grad-CAM is used to interpret the deep-learning-based inception U-Net model to increase consumer trust. The proposed inception U-net with Grad-CAM model achieves 0.622 intersection over union (IoU) on the Indian Driving Dataset (IDD-Lite), outperforming the state-of-the-art (SOTA) deep neural-network-based segmentation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.