The automatic recognition and classification of Alzheimer disease utilizing magnetic resonance imaging is a hard task, due to the complexity and variability of the size, location, texture and shape of the lesions. The objective of this study is to propose a proper feature dimensional reduction and classification approach to improve the performance of Alzheimer disease recognition and classification. At first, the input brain images were acquired from Open Access Series of Imaging Studies (OASIS) and National Institute of Mental Health and Neuro Sciences (NIMHANS) databases. Then, the image pre-processing and feature extraction were attained by applying Contrast Limited Adaptive Histogram Equalization (CLAHE) and Discrete Wavelet Transform (DWT) approach to denoise and extract the feature vectors from the images. In addition, Probabilistic Principal Component Analysis (PPCA) was used to diminish the extracted features dimension that effectively lessen the “curse of dimensionality” concern. At last, Long Short-Term Memory (LSTM) classifier was employed to classify the brain images as Alzheimer disease, normal, and Mild Cognitive Impairment (MCI). From the simulation outcome, the proposed system attained better performance compared to the existing systems and showed 3–11% improvement in recognition accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.