The Ludwig‐Soret effect was investigated in the thermally induced phase separation process via SD in polymer solutions under an externally imposed spatial linear temperature gradient using mathematical modeling and computer simulation. The mathematical model incorporated non‐linear Cahn‐Hilliard theory for SD, Flory‐Huggins theory for thermodynamics, and the Ludwig‐Soret effect for thermal diffusion. 2D simulation results revealed that the Ludwig‐Soret effect had negligible impact on the phase separation mechanism in binary polymer solutions under a non‐uniform temperature field, as reflected by the time evolution of the dimensionless structure factor and the transition time from the early to the intermediate stages of SD.magnified image
Thermal-induced phase separation (TIPS) is one of the methods used to fabricate functional polymeric materials, i.e. PDLC films for electro-optical devices such flat-panel displays, switchable windows etc., and microporous synthetic membranes from polymer solutions. Since the characteristic thermal, mechanical, and optical properties of these materials are controlled by the morphological features, it it important to understand the phase separation mechanism that forms these materials. In this work, the effect of thermal diffusion, also known as the Ludwig-Soret effect, on the TIPS method of phase separation via the SD mechanism in polymer solutions under non-uniform temperature field has been investigated using the computational technique. The Ludwig-Soret effect occurs when a temperature gradient applied to a fluid mixture induces a net mass flow, which leads to the formation of a concentration gradient. A rigorous mathematical model for TIPS via the spinodal decomposition mechanism based on the nonlinear Cahn-Hilliard and Flory-Huggins theories combined with thermal diffusion phenomenon has been formulated for binary polymer solutions under non-uniform temperature field and solved numerically. Numerical simulation results revealed that the thermal diffusion phenomenon had very little or negligible effect on the phase separation mechanism under a non-uniform temperature field, which was reflected from the studies of the time evolution of structure factor and transition time from the early to the intermediate stages of SD.
Thermal-induced phase separation (TIPS) is one of the methods used to fabricate functional polymeric materials, i.e. PDLC films for electro-optical devices such flat-panel displays, switchable windows etc., and microporous synthetic membranes from polymer solutions. Since the characteristic thermal, mechanical, and optical properties of these materials are controlled by the morphological features, it it important to understand the phase separation mechanism that forms these materials. In this work, the effect of thermal diffusion, also known as the Ludwig-Soret effect, on the TIPS method of phase separation via the SD mechanism in polymer solutions under non-uniform temperature field has been investigated using the computational technique. The Ludwig-Soret effect occurs when a temperature gradient applied to a fluid mixture induces a net mass flow, which leads to the formation of a concentration gradient. A rigorous mathematical model for TIPS via the spinodal decomposition mechanism based on the nonlinear Cahn-Hilliard and Flory-Huggins theories combined with thermal diffusion phenomenon has been formulated for binary polymer solutions under non-uniform temperature field and solved numerically. Numerical simulation results revealed that the thermal diffusion phenomenon had very little or negligible effect on the phase separation mechanism under a non-uniform temperature field, which was reflected from the studies of the time evolution of structure factor and transition time from the early to the intermediate stages of SD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.