Summary
As a try, this work has been focused in the way towards the effective contribution in the field of solar aviation using renowned nanotechnology. After realizing the causes and effects of traditionally used energy forms, the search of cost‐efficient, eco‐friendly, and most prominent renewable source leads us back to the solar utilities. Research era of solar radiation‐powered aircraft has been in trend. Focusing on that, an efficient numerical model representing the flow and thermal aspects of a parabolic trough surface collector (PTSC) embedded on solar aircraft wings has been adopted for this study. As the first time with the note, an eminent and leading form of thermal efficient fluid of kind, the Casson hybrid nanofluid has been engaged with the expectations of enhanced performance in the solar aircraft wings. To test it, a trending reputable numerical scheme of the Keller‐box method has been utilized and the parametrical studies were carried out. The upshots of those studies provide the affable proofs in favor of our expectations towards the improved solar wings with better thermal efficiency. The glimpse of those successes in the parametrical level has been showcased in the forms of tables and graphs. The lateral “x” direction significant about the inertial forces, suspended particle ratio, and skin resistance phenomena, while for the transverse fluidity in the “y” direction were has to be concern about the magnetic interactions, rotational coordinates, viscous nature of the fluid along with the porous states. The power of hybrid nanofluid combos was exposed in higher notes in a unique state of solar aircraft wings. Furthermore, the thermal efficiency of hybrid nanofluids over nanofluids got down to a minimal level of 6.1% and peaked up to 21.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.