Problem statement: Sheet metal extrusion is a process in which the punch penetrates one surface of the sheet metal material to cause it to extrude and flow toward the outlet of the die. Therefore, the process can invent different thickness of sheet metal work piece. From these advantages on the sheet metal extrusion, nowadays, it is generally used in many manufacturing of industrial elements fields. The Sheet Metal Extrusions in Fine Blanking (SME-FB) advantages, over a conventional extrusion, are possible due to a blank holder force, a counterpunch force and a large die radius. However, the selection on those parameter values affects on the material flow and the surface quality on the extrusion parts also. Namely, it causes the crack surface and shrinkage failure which are the general problems in the SME-FB. Approach: Objective of this research was to study the effect of die radius on the SME-FB surface which investigated the formation of the failure defection with respect to the several die radiuses by using the Finite Element Method (FEM). Results: From the results, it indicated that applying the small die radius caused the material flow difficult resulting in the decreasing of smooth surface. Vice versa, in the case of large die radius, the material flow easy is resulting in the increasing of smooth surface. Conclusion: The FEM simulation results of a larger die radius will cause the residual stress at work piece.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.