Computer vision has been demonstrated as state-of-the-art technology in precision agriculture in recent years. In this paper, an Alex net model was implemented to identify and classify cotton leaf diseases. Cotton Dataset consists of 2275 images, in which 1952 images were used for training and 324 images were used for validation. Five convolutional layers of the AlexNet deep learning technique is applied for features extraction from raw data. They were remaining three fully connected layers of AlexNet and machine learning classification algorithms such as Ada Boost Classifier (ABC), Decision Tree Classifier (DTC), Gradient Boosting Classifier (GBC). K Nearest Neighbor (KNN), Logistic Regression (LR), Random Forest Classifier (RFC), and Support Vector Classifier (SVC) are used for classification. Three fully connected layers of Alex Net provided the best performance model with a 94.92% F1_score at the training time of about 51min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.