As the amount of multimedia data is increasing day-by-day thanks to less expensive storage devices and increasing numbers of information sources, machine learning algorithms are faced with large-sized and noisy datasets. Fortunately, the use of a good sampling set for training influences the final results significantly. But using a simple random sample (SRS) may not obtain satisfactory results because such a sample may not adequately represent the large and noisy dataset due to its blind approach in selecting samples. The difficulty is particularly apparent for huge datasets where, due to memory constraints, only very small sample sizes are used. This is typically the case for multimedia applications, where data size is usually very large. In this article we propose a new and efficient method to sample of large and noisy multimedia data. The proposed method is based on a simple distance measure that compares the histograms of the sample set and the whole set in order to estimate the representativeness of the sample. The proposed method deals with noise in an elegant manner which SRS and other methods are not able to deal with. We experiment on image and audio datasets. Comparison with SRS and other methods shows that the proposed method is vastly superior in terms of sample representativeness, particularly for small sample sizes although time-wise it is comparable to SRS, the least expensive method in terms of time. ACM Reference Format:Wang, S., Dash, M., Chia, L.-T., and Xu, M. 2007. Efficient sampling of training set in large and noisy multimedia data.
As the amount of multimedia data is increasing day-by-day thanks to cheaper storage devices and increasing number of information sources, the machine learning algorithms are faced with large-sized datasets. When original data is huge in size small sample sizes are preferred for various applications. This is typically the case for multimedia applications. But using a simple random sample may not obtain satisfactory results because such a sample may not adequately represent the entire data set due to random fluctuations in the sampling process. The difficulty is particularly apparent when small sample sizes are needed. Fortunately the use of a good sampling set for training can improve the final results significantly. In KDD'03 we proposed EASE that outputs a sample based on its 'closeness' to the original sample. Reported results show that EASE outperforms simple random sampling (SRS). In this paper we propose EASIER that extends EASE in two ways. (1) EASE is a halving algorithm, i.e., to achieve the required sample ratio it starts from a suitable initial large sample and iteratively halves. EASIER, on the other hand, does away with the repeated halving by directly obtaining the required sample ratio in one iteration. (2) EASE was shown to work on IBM S. Wang ( ) . M. Dash . L.-T.QUEST dataset which is a categorical count data set. EASIER, in addition, is shown to work on continuous data of images and audio features. We have successfully applied EASIER to image classification and audio event identification applications. Experimental results show that EASIER outperforms SRS significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.