Recent outbreaks in monkeys have proven that canine distemper virus (CDV) causes diseases in a wide range of mammals. CDV uses SLAM and nectin4 as receptors to replicate in susceptible animals. Here, we show that human nectin4, but not human SLAM, is fully functional as a CDV receptor. The CDV Ac96I strain hardly replicated in nectin4-expressing human epithelial NCI-H358 cells, but readily adapted to grow in them. Unsurprisingly, no amino acid change in the H protein was required for the adaptation. The original Ac96I strain possessed a truncated C protein, and a subpopulation possessing the intact C protein was selected after growth in NCI-H358 cells. Other CDV strains possessing the intact C protein showed significantly higher growth abilities in NCI-H358 cells than the Ac96I strain with the truncated C protein. These findings suggest that the C protein is functional in human epithelial cells and critical for CDV replication in them.
The measles virus (MV) is a major cause of childhood morbidity and mortality worldwide. We previously established a mouse monoclonal antibody, 2F4, which shows high neutralizing titers against eight different genotypes of MV. However, the molecular basis for the neutralizing activity of the 2F4 antibody remains incompletely understood. Here, we have evaluated the binding characteristics of a Fab fragment of the 2F4 antibody. Using the MV infectious assay, we demonstrated that 2F4 Fab inhibits viral entry via either of two cellular receptors, SLAM and Nectin4. Surface plasmon resonance (SPR) analysis of recombinant proteins indicated that 2F4 Fab interacts with MV hemagglutinin (MV‐H) with a KD value at the nm level. Furthermore, we designed a single‐chain Fv fragment of 2F4 antibody as another potential biopharmaceutical to target measles. The stable 2F4 scFv was successfully prepared by the refolding method and shown to interact with MV‐H at the μm level. Like 2F4 Fab, scFv inhibited receptor binding and viral entry. This indicates that 2F4 mAb uses the receptor‐binding site and/or a neighboring region as an epitope with high affinity. These results provide insight into the neutralizing activity and potential therapeutic use of antibody fragments for MV infection.
The genus Morbillivirus includes measles virus, canine distemper virus and rinderpest virus. These are highly contagious and exhibit high mortality. These viruses have the attachment glycoprotein, hemagglutinin (H), at the virus surface, which bind to signaling lymphocyte activation molecule (SLAM) and Nectin 4 as receptors for the entry. However, the molecular mechanism for this entry has been limitedly understood. Here we summarize the current topics, (1) newly identified receptor, Nectin 4, (2) crystal structures of H-receptor complexes and (3) detail biochemical studies of the H-F communication for the entry. These provide insight on the mechanism of morbillivirus entry event and furthermore drug developments.
Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV), which causes serious immunological and neurological disorders in carnivores, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4 binding site is well-conserved with that of MeV-H, that of SLAM is similar but partially different, which contributes to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head. These results suggest that sugar-shielded tilted-homodimeric structure and dynamic changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.