Mevalonate (MVA) pathway is the core for terpene and sterol biosynthesis, whose metabolic flux influences the synthesis efficiency of such compounds. Saccharomyces cerevisiae is an attractive chassis for the native active MVA pathway. Here, the truncated form of Enterococcus faecalis MvaE with only 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity was found to be the most effective enzyme for MVA pathway flux using squalene as the metabolic marker, resulting in 431-fold and 9-fold increases of squalene content in haploid and industrial yeast strains respectively. Furthermore, a positive correlation between MVA metabolic flux and b-alanine metabolic activity was found based on a metabolomic analysis. An industrial strain SQ3-4 with high MVA metabolic flux was constructed by combined engineering HMGR activity, NADPH regeneration, cytosolic acetyl-CoA supply and b-alanine metabolism. The strain was further evaluated as the chassis for terpenoids production. Strain SQ3-4-CPS generated from expressing b-caryophyllene synthase in SQ3-4 produced 11.86 AE 0.09 mg l À1 b-caryophyllene, while strain SQ3-5 resulted from down-regulation of ERG1 in SQ3-4 produced 408.88 AE 0.09 mg l À1 squalene in shake flask cultivations. Strain SQ3-5 produced 4.94 g l À1 squalene in fed-batch fermentation in cane molasses medium, indicating the promising potential for cost-effective production of squalene.
Transcriptional downregulation is widely used for metabolic flux control. Here, marO, a cis-element of Escherichia coli mar operator, was explored to engineer promoters of Saccharomyces cerevisiae for downregulation. First, the ADH1 promoter (P ADH1 ) and its enhanced variant P UADH1 were engineered by insertion of marO into different sites, which resulted in decrease in both gfp5 transcription and GFP fluorescence intensity to various degrees. Then, marO was applied to engineer the native ERG1 and ERG11 promoters due to their importance for accumulation of value-added intermediates squalene and lanosterol. Elevated squalene content (4.9-fold) or lanosterol content (4.8-fold) and 91 or 28% decrease in ergosterol content resulted from the marO-engineered promoter P ERG1(M5) or P ERG11(M3) , respectively, indicating the validity of the marO-engineered promoters in metabolic flux control. Furthermore, squalene production of 3.53 g/L from cane molasses, a cheap and bulk substrate, suggested the cost-effective and promising potential for squalene production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.