Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ~1.6 million cases and ~1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India.
A study of the epidemiology of malaria transmission was undertaken in 13 tribal villages located in forest and plain areas of Sundargarh District of Orissa state, India, from January 2001 to December 2003. In forest areas, intense transmission of malaria is attributed to the highly anthropophagic vector Anopheles fluviatilis sibling species S and is complemented by A. culicifacies sibling species C. In plain areas, A. culicifacies sibling species C is responsible for malaria transmission. The entomological inoculation rate in the forest and plain areas was 0.311 and 0.014 infective bites/person/night, respectively, during 2003. Malaria transmission is perennial both in forest and plain areas but is markedly low in the plain area compared with the forest area. Plasmodium falciparum accounted for 85.0% of the total malaria cases during the study period. In forest and plain areas, the number of P. falciparum cases per 1000 population per year was 284.1 and 31.2, respectively, whereas the parasite rate was 14.0% and 1.7%, respectively. In forest areas, clinical malaria occurs more frequently in children aged 0-5 years and declines gradually with increasing age. The study showed that villages in forest and plain areas separated by short geographical distances have distinct epidemiology of malaria transmission.
Background: Susceptibility/resistance to Plasmodium falciparum malaria has been correlated with polymorphisms in more than 30 human genes with most association analyses having been carried out on patients from Africa and south-east Asia. The aim of this study was to examine the possible contribution of genetic variants in the TNF and FCGR2A genes in determining severity/resistance to P. falciparum malaria in Indian subjects.
Background: Clinical malaria has proven an elusive burden to enumerate. Many cases go undetected by routine disease recording systems. Epidemiologists have, therefore, frequently defaulted to actively measuring malaria in population cohorts through time. Measuring the clinical incidence of malaria longitudinally is labour-intensive and impossible to undertake universally. There is a need, therefore, to define a relationship between clinical incidence and the easier and more commonly measured index of infection prevalence: the "parasite rate". This relationship can help provide an informed basis to define malaria burdens in areas where health statistics are inadequate.
Malaria in India, while decreasing, remains a serious public health problem, and the contribution of submicroscopic and asymptomatic infections to its persistence is poorly understood. We conducted community surveys and clinic studies at three sites in India differing in their eco-epidemiologies: Chennai (Tamil Nadu), Nadiad (Gujarat), and Rourkela (Odisha), during 2012–2015. A total of 6,645 subject blood samples were collected for Plasmodium diagnosis by microscopy and PCR, and an extensive clinical questionnaire completed. Malaria prevalence ranged from 3–8% by PCR in community surveys (24 infections in Chennai, 56 in Nadiad, 101 in Rourkela), with Plasmodium vivax dominating in Chennai (70.8%) and Nadiad (67.9%), and Plasmodium falciparum in Rourkela (77.3%). A proportional high burden of asymptomatic and submicroscopic infections was detected in community surveys in Chennai (71% and 71%, respectively, 17 infections for both) and Rourkela (64% and 31%, 65 and 31 infections, respectively). In clinic studies, a proportional high burden of infections was identified as submicroscopic in Rourkela (45%, 42 infections) and Chennai (19%, 42 infections). In the community surveys, anemia and fever were significantly more common among microscopic than submicroscopic infections. Exploratory spatial analysis identified a number of potential malaria hotspots at all three sites. There is a considerable burden of submicroscopic and asymptomatic malaria in malarious regions in India, which may act as a reservoir with implications for malaria elimination strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.